Re: How to plot field lines of conformal mapping
- To: mathgroup at smc.vnet.net
- Subject: [mg26171] Re: [mg26083] How to plot field lines of conformal mapping
- From: BobHanlon at aol.com
- Date: Thu, 30 Nov 2000 01:04:13 -0500 (EST)
- Sender: owner-wri-mathgroup at wolfram.com
f = z + I Sinh[z]; Off[ParametricPlot::ppcom]; ParametricPlot[ Evaluate[ Join[{{Re[f], Im[f]} /. z -> u - Pi/2I}, Table[{Re[f], Im[f]} /. z -> u - x*I, {x, -1.5, 1.5, .25}], {{Re[f], Im[f]} /. z -> u - Pi/2I}]], {u, -3, 3}, PlotPoints -> 700, PlotStyle -> {RGBColor[1, 0, 0], RGBColor[0, 0, 1]}]; This can be simplified further if the curves are "uniformly" spaced ParametricPlot[ Evaluate[ Table[{Re[f], Im[f]} /. z -> u - x*I, {x, -Pi/2, Pi/2, Pi/12}]], {u, -3, 3}, PlotPoints -> 700, PlotStyle -> {RGBColor[1, 0, 0], RGBColor[0, 0, 1]}]; Bob Hanlon In a message dated 11/28/00 3:27:44 AM, Jos.Bergervoet at philips.com writes: >I would like to plot a family of field lines obtained from a conformal >mapping, as in the following code snippet. Is there a shorter way? > > f = z + I Sinh[z] > > ParametricPlot[{ > {Re[f], Im[f]} /. z->u-Pi/2I, > {Re[f], Im[f]} /. z->u-1.5I, > {Re[f], Im[f]} /. z->u-1.25I, > {Re[f], Im[f]} /. z->u-1.0I, > {Re[f], Im[f]} /. z->u-0.75I, > {Re[f], Im[f]} /. z->u-0.5I, > {Re[f], Im[f]} /. z->u-0.25I, > {Re[f], Im[f]} /. z->u+0I, > {Re[f], Im[f]} /. z->u+0.25I, > {Re[f], Im[f]} /. z->u+0.5I, > {Re[f], Im[f]} /. z->u+0.75I, > {Re[f], Im[f]} /. z->u+1.0I, > {Re[f], Im[f]} /. z->u+1.25I, > {Re[f], Im[f]} /. z->u+1.5I, > {Re[f], Im[f]} /. z->u+Pi/2I > }, > {u,-3,3}, PlotPoints->700] > > >I tried (without success) to do it after creating a table in advance: > > n = 1 > t = Table[{Re[f], Im[f]} /. z->u+i/n Pi/2I , {i, -n,n}] > ParametricPlot[t, {u,-3,3}, PlotPoints->700] > >This does not work. Does anyone know an elegant solution? > >NB: I do not want the full CartesianMap[F , {-3,3}, {-Pi/2,Pi/2}] >but only one of the two families of lines. >