MathGroup Archive 2001

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: Polar Grids in Mathematica


Needs["Graphics`Graphics`"];
Needs["Graphics`ComplexMap`"];

DisplayTogether[
    PolarPlot[{4/(2+Cos[t]), 4 Cos[t]-2},{t, 0, 2 Pi}, 
      PlotStyle -> {{AbsoluteThickness[2], 
            RGBColor[1, 0, 0]}, {AbsoluteThickness[2], RGBColor[0, 0, 1]}}], 
    PolarMap[Identity, {0, 7, 1}, {0, 2 Pi, Pi/6}], Frame -> True, 
    PlotRange -> 1.03*{{-4, 6}, {-4, 4}}];

For log plots you will probably have to do this manually such as

DisplayTogether[
    PolarPlot[{4/(2+Cos[t]), 4 Cos[t]-2},{t,0,2 Pi}, 
      PlotStyle -> {{AbsoluteThickness[2], 
            RGBColor[1, 0, 0]}, {AbsoluteThickness[2], RGBColor[0, 0, 1]}}], 
    PolarPlot[Evaluate[Table[r, {r, 1, 7}]], {t, 0, 2Pi}], 
    Prolog -> Table[
        Line[7*{{-Cos[t], -Sin[t]}, {Cos[t], Sin[t]}}], {t, 0, Pi, Pi/6}], 
    Frame -> True, PlotRange -> 1.03*{{-4, 6}, {-4, 4}}];

Bob Hanlon

In a message dated 2001/4/4 4:29:48 AM, PLarson at bju.edu writes:

>Does anyone know how to get polar grids for PolarPlot functions? Or
>even semi-log grids? (I can get rectangular grids, of course.)


  • Prev by Date: Re: complex coefficients and rules...
  • Next by Date: Re: Notebooks do not display correctly in 1024X768
  • Previous by thread: Polar Grids in Mathematica
  • Next by thread: RE: Polar Grids in Mathematica