Services & Resources / Wolfram Forums
-----
 /
MathGroup Archive
2001
*January
*February
*March
*April
*May
*June
*July
*August
*September
*October
*November
*December
*Archive Index
*Ask about this page
*Print this page
*Give us feedback
*Sign up for the Wolfram Insider

MathGroup Archive 2001

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: Polar Grids in Mathematica

  • To: mathgroup at smc.vnet.net
  • Subject: [mg28216] Re: [mg28201] Polar Grids in Mathematica
  • From: BobHanlon at aol.com
  • Date: Thu, 5 Apr 2001 03:00:30 -0400 (EDT)
  • Sender: owner-wri-mathgroup at wolfram.com

Needs["Graphics`Graphics`"];
Needs["Graphics`ComplexMap`"];

DisplayTogether[
    PolarPlot[{4/(2+Cos[t]), 4 Cos[t]-2},{t, 0, 2 Pi}, 
      PlotStyle -> {{AbsoluteThickness[2], 
            RGBColor[1, 0, 0]}, {AbsoluteThickness[2], RGBColor[0, 0, 1]}}], 
    PolarMap[Identity, {0, 7, 1}, {0, 2 Pi, Pi/6}], Frame -> True, 
    PlotRange -> 1.03*{{-4, 6}, {-4, 4}}];

For log plots you will probably have to do this manually such as

DisplayTogether[
    PolarPlot[{4/(2+Cos[t]), 4 Cos[t]-2},{t,0,2 Pi}, 
      PlotStyle -> {{AbsoluteThickness[2], 
            RGBColor[1, 0, 0]}, {AbsoluteThickness[2], RGBColor[0, 0, 1]}}], 
    PolarPlot[Evaluate[Table[r, {r, 1, 7}]], {t, 0, 2Pi}], 
    Prolog -> Table[
        Line[7*{{-Cos[t], -Sin[t]}, {Cos[t], Sin[t]}}], {t, 0, Pi, Pi/6}], 
    Frame -> True, PlotRange -> 1.03*{{-4, 6}, {-4, 4}}];

Bob Hanlon

In a message dated 2001/4/4 4:29:48 AM, PLarson at bju.edu writes:

>Does anyone know how to get polar grids for PolarPlot functions? Or
>even semi-log grids? (I can get rectangular grids, of course.)


  • Prev by Date: Re: complex coefficients and rules...
  • Next by Date: Re: Notebooks do not display correctly in 1024X768
  • Previous by thread: Polar Grids in Mathematica
  • Next by thread: RE: Polar Grids in Mathematica