Re: Statistics on Matrices
- To: mathgroup at smc.vnet.net
- Subject: [mg28335] Re: [mg28323] Statistics on Matrices
- From: BobHanlon at aol.com
- Date: Thu, 12 Apr 2001 02:18:00 -0400 (EDT)
- Sender: owner-wri-mathgroup at wolfram.com
Needs["Statistics`DescriptiveStatistics`"]; mat[i_] := Partition[ToExpression[# <> ToString[i]]& /@ {"a", "b", "c", "d"}, 2]; Combine the matrices into a three dimensional array data = Table[mat[i], {i, 5}]; positionStat[func_, data_List] := Partition[func /@ Transpose[Flatten /@ data], 2]; positionStat[Mean, data] {{(1/5)*(a1 + a2 + a3 + a4 + a5), (1/5)*(b1 + b2 + b3 + b4 + b5)}, {(1/5)*(c1 + c2 + c3 + c4 + c5), (1/5)*(d1 + d2 + d3 + d4 + d5)}} Similarly, positionStat[HarmonicMean, data] positionStat[GeometricMean, data] positionStat[LocationReport, data][[2, 1]] positionStat[DispersionReport, data][[1, 2]] Bob Hanlon In a message dated 2001/4/11 2:18:23 AM, Moranresearch at aol.com writes: >I have a series of 2x2 matrices >How can I get a LocationReport on each element >{{ai,bi},{ci,di}} , {i,1,n} >or even simpler a mean for each element >{{Mean[a],Mean[b]},{Mean[c],Mean[d}} >I prefer to use the Location Report, DistributionReport etc if possible