Re: Pattern matching "on the fly"
- To: mathgroup at smc.vnet.net
- Subject: [mg30261] Re: Pattern matching "on the fly"
- From: "Allan Hayes" <hay at haystack.demon.co.uk>
- Date: Sat, 4 Aug 2001 01:14:28 -0400 (EDT)
- References: <9jtk77$87r$1@smc.vnet.net> <9jvrbe$doi$1@smc.vnet.net> <9kdbfr$f2m$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Stephen, My result was with Version: "4.1 for Microsoft Windows (November 2, 2000)" System: Windows 98 Machine: Toshiba Tecra 750 DVD Allan --------------------- Allan Hayes Mathematica Training and Consulting Leicester UK www.haystack.demon.co.uk hay at haystack.demon.co.uk Voice: +44 (0)116 271 4198 Fax: +44 (0)870 164 0565 -- Allan --------------------- Allan Hayes Mathematica Training and Consulting Leicester UK www.haystack.demon.co.uk hay at haystack.demon.co.uk Voice: +44 (0)116 271 4198 Fax: +44 (0)870 164 0565 "Stephen P Luttrell" <luttrell at signal.dra.hmg.gb> wrote in message news:9kdbfr$f2m$1 at smc.vnet.net... > > "Allan Hayes" <hay at haystack.demon.co.uk> wrote in message > news:9jvrbe$doi$1 at smc.vnet.net... > > Tony, > > Not a general solution, but for your example we get > > > > > > (1+x)^1000000 +O[x]^3//Normal//Timing > > > > {0.27*Second, 1 + 1000000*x + 499999500000*x^2} > > > and I got this result using Mathematica 4.1 (Windows NT 4): > > (1+x)^1000000 +O[x]^3//Normal//Timing > > {0.Second, 1 + 1000000000000000000000 x + > 499999999999999999999500000000000000000000 x^2} > > > -- > Stephen P Luttrell > QinetiQ, Malvern, U.K. > luttrell at signal.dera.gov.uk > 01684-894046 (phone), 01684-894384 (fax) > > >