Re: restrictions on parameter
- To: mathgroup at smc.vnet.net
- Subject: [mg31983] Re: [mg31954] restrictions on parameter
- From: BobHanlon at aol.com
- Date: Fri, 14 Dec 2001 16:53:18 -0500 (EST)
- Sender: owner-wri-mathgroup at wolfram.com
In a message dated 12/14/01 5:49:04 AM, steve at smc.vnet.net writes: >Thu, 13 Dec 2001 12:35:49 +0100 >From: Thomas Steger <thomas.steger at uni-greifswald.de> To: mathgroup at smc.vnet.net >To: mathgroup at smc.vnet.net >Subject: [mg31983] [mg31954] restrictions on parameter > >Dear list, > >here is a probably simple problem with mathematica. >Greetings >Thomas > >Example: Given the restrictions on the parameters as shown below, I >would like to check the sign of the determinant or the eigenvalues of >Matrix A. The problem seems to be that the restricions on the parameters >are not properly specified. > >Clear[a, b, c, d] >a < 0; b > 0; c > 0; d > 0; >A = {{a, b}, {c, d}}; > >eigen = Eigensystem[A]; >{d1, d2} = {eigen[[1, 1]], eigen[[1, 2]]}; > >det1 = Det[A] >-b c + a d > >TrueQ[det1 < 0] >False > >This should be true! > >TrueQ[d1 < 0] >False > A = {{a,b},{c,d}}; TrueQ returns False unless the expression evaluates to True. Use Simplify with assumptions Simplify[Det[A] < 0, {a<0,b>0,c>0,d>0}] True {d1, d2} = Eigensystem[A][[1]]; Simplify[d1 < 0, {a<0,b>0,c>0,d>0}] True Bob Hanlon Chantilly, VA USA