Re: Parametric Plot

• To: mathgroup at smc.vnet.net
• Subject: [mg27130] Re: [mg27077] Parametric Plot
• From: Reza Malek-Madani <research at usna.edu>
• Date: Sun, 4 Feb 2001 21:27:12 -0500 (EST)
• Sender: owner-wri-mathgroup at wolfram.com

```Let First act on your definitions of xd, xdd, xr, xrd inside the Module:

xd[t_] := First[Evaluate[x1[t] /. pend]];
xdd[t_] := First[Evaluate[x1'[t] /. pend]];
xr[t_] := First[Evaluate[x2[t] /. pend]];
xrd[t_] := First[Evaluate[x2'[t] /. pend]];

The rest of your program works.

Reza.

-------------------------------------------------------------------------
Research Office, MS 10m         Phone: 410-293-2504 (FAX -2507)
U.S. Naval Academy              Nimitz Room 17 in ERC
Annapolis MD 21402-5031         Email: research at usna.edu

--------------------------------------------------------------------------

On Sat, 3 Feb 2001, Winston Garira wrote:

> I am trying to solve a system of two coupled pendulums using the NDSolve.
> command. If I replace the Plot[{xd[t],xr[t]},{t,0,100}] with
> ParametricPlot[{xd[t],xr[t]},{t,0,100}] it does not work. Can someone tell
> me why the ParametricPlot command does not work in this case. I need to
> make parametric plots for this system.
>
> Thanking you in annticipation
>
> Winston
>
>
>  Pends[init1_, init2_, time_, k_, {c_, w_, p_}]:=
>  Module[{},
> 	pend=NDSolve[{x1''[t]+ c x1'[t]+ p Sin[x1[t]]==k(x2[t]-x1[t]),
> 		      x2''[t]+ c x2'[t]+ p Sin[x2[t]]==k(x1[t]-x2[t]),
> 		x1[0]==init1[[1]], x1'[0]==init1[[2]],
> 		x2[0]==init2[[1]], x2'[0]==init2[[2]]},
> 		{x1, x2},
> 		{t,0,time}, MaxSteps->200000];
> 	xd[t_] := Evaluate[x1[t] /. pend];
> 	xdd[t_]:= Evaluate[x1'[t] /. pend];
> 	xr[t_] := Evaluate[x2[t] /. pend];
> 	xrd[t_]:= Evaluate[x2'[t] /. pend];
> 	];
>
>
> c=0.1; w=0.5; p=1.9;
>
> Pends[{1.57,0}, {-1.57,0}, 5000,0.6,  {c,w,p}];
> Plot[{xd[t],xr[t]},{t,0,100},
> PlotStyle\[Rule]{RGBColor[1,0,0.3],RGBColor[0,0.5,1]}];
>
>
>
> W.GARIRA
> E-mail: w.garira at ucl.ac.uk
> phone : +44-(0)20-7679-2521
> ___________________________________________________
>
>
>
>
>

```