rendering with Polygon vs. Cuboid
- To: mathgroup at smc.vnet.net
- Subject: [mg27316] rendering with Polygon vs. Cuboid
- From: pinhead at sonic.net (Matthias Schabel)
- Date: Tue, 20 Feb 2001 03:05:25 -0500 (EST)
- Sender: owner-wri-mathgroup at wolfram.com
With the proviso that the code is cludgy and that I'm not really proficient in Mathematica, I'm curious to know why the call to boxCuboid and the call to boxCube don't render the same way - the former gives me what I expect, while the latter is truncated along the y-axis. Since RotateShape doesn't allow me to operate on the Cuboid primitives, I obviously would like the polygon representation to work. BTW, the overall objective here is to be able to create groups of polygons representing an object and then render multiple copies of the same object with differing orientations using RotateShape, TranslateShape, etc... Thanks in advance for any advice... Matthias Notebook[{ Cell[BoxData[ \(<< Graphics`Shapes`\)], "Input", InitializationCell->True], Cell[BoxData[ \(\(cube[start_, end_] := {Polygon[{{start[\([1]\)], start[\([2]\)], start[\([3]\)]}, {end[\([1]\)], start[\([2]\)], start[\([3]\)]}, {end[\([1]\)], end[\([2]\)], start[\([3]\)]}, {start[\([1]\)], end[\([2]\)], start[\([3]\)]}}], Polygon[{{start[\([1]\)], start[\([2]\)], end[\([3]\)]}, {end[\([1]\)], start[\([2]\)], end[\([3]\)]}, {end[\([1]\)], end[\([2]\)], end[\([3]\)]}, {start[\([1]\)], end[\([2]\)], end[\([3]\)]}}], Polygon[{{start[\([1]\)], start[\([2]\)], start[\([3]\)]}, {start[\([1]\)], end[\([2]\)], start[\([3]\)]}, {start[\([1]\)], end[\([2]\)], end[\([3]\)]}, {start[\([1]\)], start[\([2]\)], end[\([3]\)]}}], Polygon[{{end[\([1]\)], start[\([2]\)], start[\([3]\)]}, {end[\([1]\)], end[\([2]\)], start[\([3]\)]}, {end[\([1]\)], end[\([2]\)], end[\([3]\)]}, {end[\([1]\)], start[\([2]\)], end[\([3]\)]}}], Polygon[{{start[\([1]\)], start[\([2]\)], start[\([3]\)]}, {end[\([1]\)], start[\([2]\)], start[\([3]\)]}, {end[\([1]\)], start[\([2]\)], end[\([3]\)]}, {start[\([1]\)], start[\([2]\)], end[\([3]\)]}}], Polygon[{{start[\([1]\)], end[\([2]\)], start[\([3]\)]}, {end[\([1]\)], end[\([2]\)], start[\([3]\)]}, {end[\([1]\)], end[\([2]\)], end[\([3]\)]}, {start[\([1]\)], end[\([2]\)], end[\([3]\)]}}]};\)\)], "Input", InitializationCell->True], Cell[BoxData[{ \(frameCuboid[x_, y_, z_, dx_, dy_, dz_] := Cuboid[{x, y, z}, {x + dx, y + dy, z + dz}]\), "\[IndentingNewLine]", \(frameCube[x_, y_, z_, dx_, dy_, dz_] := \[IndentingNewLine]cube[{x, y, z}, {x + dx, y + dy, z + dz}]\)}], "Input"], Cell[BoxData[{ \(\(boxCuboid[x_, y_, z_] := {frameCuboid[x, y, z, 36, 24, 30.175], frameCuboid[x + 1, y - 1, z + 1, 17, 2, 22], frameCuboid[x + 1, y - 1, z + 23, 17, 2, 6], frameCuboid[x + 18, y - 1, z + 1, 17, 2, 22], frameCuboid[x + 18, y - 1, z + 23, 17, 2, 6]};\)\), "\n", \(Show[Graphics3D[boxCuboid[0, 0, 0]]]\)}], "Input"], Cell[BoxData[{ \(\(boxCube[x_, y_, z_] := {frameCube[x, y, z, 36, 24, 30.175], frameCube[x + 1, y - 1, z + 1, 17, 2, 22], frameCube[x + 1, y - 1, z + 23, 17, 2, 6], frameCube[x + 18, y - 1, z + 1, 17, 2, 22], frameCube[x + 18, y - 1, z + 23, 17, 2, 6]};\)\), "\n", \(Show[Graphics3D[boxCube[0, 0, 0]]]\)}], "Input"] }, FrontEndVersion->"4.0 for Microsoft Windows", ScreenRectangle->{{0, 1024}, {0, 695}}, WindowSize->{496, 599}, WindowMargins->{{18, Automatic}, {Automatic, 23}} ]