Re: Hypocycloid Area
- To: mathgroup at smc.vnet.net
- Subject: [mg27329] Re: Hypocycloid Area
- From: "Allan Hayes" <hay at haystack.demon.co.uk>
- Date: Wed, 21 Feb 2001 03:17:02 -0500 (EST)
- References: <96t8mk$pq1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
The path traced out by a point on a circle of radius r rolling inside a circle of radius R is given by f[t_,r_,R_] = (R-r){Cos[t], Sin[t]} + r {Cos[(1-r/R)t],Sin[(1-R/r)t]} So an n-cusped hypocycloid is given by f[t_,n_, R_] = R((1-1/n){Cos[t], Sin[t]} + {Cos[(1-n)t],Sin[(1-n)t]}/n) Check this graphically: ParametricPlot[Evaluate[f[t, 5, 3]], {t, 0, 2Pi}, AspectRatio -> Automatic, Epilog -> Circle[{0, 0}, 3], PlotRange -> All]; The square of the distance from the origin to a point on the hypocycloid is rad2=Simplify[f[t,n, R].f[t,n, R]] (R^2*(2 - 2*n + n^2 + 2*(-1 + n)*Cos[n*t]))/n^2 The area of the hypocycloid is Integrate[rad2/2, {t,0,2Pi}, Assumptions-> {Element[n,Integers] &&n>0}] (R^2*(n*(2 - 2*n + n^2)*Pi + (-1 + n)*Sin[2*n*Pi]))/n^3 More simplification is needed to get rid of the Sin. Simplify[%,Element[n, Integers]] ((2 - 2*n + n^2)*Pi*R^2)/n^2 And after Expand[%] Pi*R^2 + (2*Pi*R^2)/n^2 - (2*Pi*R^2)/n we see that as n->Infinity the area, as expected, -> the area of a circle radius R -- Allan --------------------- Allan Hayes Mathematica Training and Consulting Leicester UK www.haystack.demon.co.uk hay at haystack.demon.co.uk Voice: +44 (0)116 271 4198 Fax: +44 (0)870 164 0565 "Lizveth Robles" <lrobles at unimail.uninorte.edu.co> wrote in message news:96t8mk$pq1 at smc.vnet.net... > Hello, > > I have seen an answer you posted about the area of the epicycloid, using polar > coordinates. I'm trying to do the same thing with the hypocycloid with 5 cuspids > but I don't get anywhere. What am I doing wrong? Am I missing something? > > Thanks for your help! > > Lizveth > > > _________________________________ > Visita nuestro sitio Web en: http://uninorte.edu.co >