Re: Re: Who can help me?
- To: mathgroup at smc.vnet.net
- Subject: [mg26804] Re: Re: [mg26778] Who can help me?
- From: Tomas Garza <tgarza01 at prodigy.net.mx>
- Date: Wed, 24 Jan 2001 04:18:43 -0500 (EST)
- Sender: owner-wri-mathgroup at wolfram.com
Further comments to my previous message. Other than the numerical problem, I found an interesting (or so it seems to me) fact. I haven't the faintest idea what your original problem is about, but the polynomial has the property that if you take the first j terms, then its numerical value for x-> 2 + 2 Cos [2 Pi / 7] is the negative of the numerical value of the last 32 - j terms for that same x, for j = 1 to 31. That is, simply evaluate In[1]:= Table[{Take[a1, j - 32].Take[a2, j - 32] /. x -> 2 + 2 Cos[2.0*Pi/7], Take[a1, j].Take[a2, j] /. x -> 2 + 2 Cos[2.0*Pi/7]}, {j, 1, 31}] Out[2]= \!\({{5.782285160715823`*^16, \(-5.782285139199467`*^16\)}, \ {\(-1.407456330327663`*^18\), 1.4074563305476733`*^18}, {1.664350897746699`*^19, \ \(-1.6643508977122853`*^19\)}, {\(-1.2804361627651423`*^20\), 1.2804361627673385`*^20}, {7.230361392464404`*^20, \ \(-7.230361392461333`*^20\)}, {\(-3.200121970208588`*^21\), 3.200121970208726`*^21}, {1.1556808440293227`*^22, \ \(-1.1556808440292984`*^22\)}, {\(-3.495373870315845`*^22\), 3.4953738703158645`*^22}, {9.01004052138053`*^22, \ \(-9.010040521380498`*^22\)}, {\(-2.0035257611223482`*^23\), 2.00352576112235`*^23}, {3.8768688571383356`*^23, \ \(-3.876868857138334`*^23\)}, {\(-6.570867584057313`*^23\), 6.570867584057313`*^23}, {9.804286814731637`*^23, \ \(-9.804286814731636`*^23\)}, {\(-1.2929086666244018`*^24\), 1.292908666624402`*^24}, {1.51129470844226`*^24, \ \(-1.51129470844226`*^24\)}, {\(-1.5688840125551723`*^24\), 1.5688840125551725`*^24}, {1.447609719431064`*^24, \ \(-1.447609719431064`*^24\)}, {\(-1.18679687228797`*^24\), 1.18679687228797`*^24}, {8.630908489745314`*^23, \ \(-8.630908489745317`*^23\)}, {\(-5.551191511538765`*^23\), 5.551191511538765`*^23}, {3.1434645609556606`*^23, \ \(-3.143464560955661`*^23\)}, {\(-1.5575043190979624`*^23\), 1.5575043190979635`*^23}, {6.696880503554032`*^22, \ \(-6.696880503554029`*^22\)}, {\(-2.4719651614064567`*^22\), 2.47196516140646`*^22}, {7.721985589213778`*^21, \ \(-7.721985589213745`*^21\)}, {\(-2.0024019788866655`*^21\), 2.002401978886698`*^21}, {4.195660897089886`*^20, \ \(-4.19566089708956`*^20\)}, {\(-6.827018853514098`*^19\), 6.827018853517361`*^19}, {8.095823791432835`*^18, \ \(-8.095823791400206`*^18\)}, {\(-6.225166642017306`*^17\), 6.225166642343588`*^17}, {2.3299464415234008`*^16, \ \(-2.3299464382605824`*^16\)}}\) I don't know if this has any bearing on your original situation, but I find it rather surprising that, for example, a polynomial of degree 1 (the first term of f[x]) has the same absolute value that a polynomial of degree 31, and so on, for a particular value of x (x-> 2 + 2 Cos [2 Pi / 7]). On the other hand, In[3]:= f[x] == Take[a1, -31].Take[a2, -31] + Take[a1, 1].Take[a2, 1] Out[3]= True which would mean that whenever x = 2 + 2 Cos[2.0*Pi/7], f[x] must be zero. I hope I am not simply adding to the confusion. Tomas Garza Mexico City ----- Original Message ----- From: "Tomas Garza" <tgarza01 at prodigy.net.mx> To: mathgroup at smc.vnet.net Subject: [mg26804] Re: [mg26778] Who can help me? > First, I couldn't get a complex number, as you claim you do by simplifying > and then taking N[]. > I copied your polynomial straight from your message and pasted it into my > notebook. I call it f[x]. Then the same for x-> 2 + 2 Cos [2 [Pi] / 7]. My > computer didn't like the square brackets in [Pi] above, so I assumed that > was a misprint and got rid of them. Then > > In[1]:= > N[Simplify[f[x]] /. x -> 2 + 2 Cos[2*Pi/7]] > Out[1]= > 3.297766455913909`*^8 > > which is real and one order of magnitude larger than > > In[2]:= > N[f[x] /. x -> 2 + 2 Cos[2*Pi/7]] > Out[2]= > 3.2628184`*^7. > > One might think that this has to do with approximation problems. But I give > you still crazier results. Watch this: > > In[3]:= > f[x] /. x -> 2 + 2 Cos[2.0000000000000000*Pi/7] > Out[4]= > 3.2628184`*^7 > > Notice that the factor 2 has 16 zeros after the decimal point. Now type one > more zero, so as to have 17 instead of 16: > > In[5]:= > f[x] /. x -> 2 + 2 Cos[2.00000000000000000*Pi/7] > Out[5]= > 0. * 10^8 > > The effect of inserting one more zero was to change from machine precision > numbers to arbitrary precision numbers, and apparently this created havoc > somewhere. So there is more to this than meets the eye. In fact, it is not a > problem of approximation. I took your polynomial and examined its behavior, > truncating one by one the terms with successively smaller exponents, and > evaluating each with and without Simplify. The results are startling: > everything behaves nicely until you get to the last term, i.e., to the > original polynomial, and it is only then that the difference pops out. You > can check this: > > In[6]:= > a1 = Table[Coefficient[f[x], x^j], {j, 1, 32}]; > In[7]:= > a2 = Table[x^j, {j, 1, 32}]; > In[8]:= > f[x] == a1.a2 > Out[8]= > True > > Now take the dot products to obtain the truncated polynomials: > > In[9]:= > Table[Take[a1, -j].Take[a2, -j] /. x -> 2 + 2 Cos[2.0*Pi/7], {j, 1, 32}] > Out[9]= > \!\({2.3299464415234008`*^16, \(-6.225166642017306`*^17\), > 8.095823791432835`*^18, \(-6.827018853514098`*^19\), > 4.195660897089886`*^20, \(-2.0024019788866655`*^21\), > 7.721985589213778`*^21, \(-2.4719651614064567`*^22\), > 6.696880503554032`*^22, \(-1.5575043190979624`*^23\), > 3.1434645609556606`*^23, \(-5.551191511538765`*^23\), > 8.630908489745314`*^23, \(-1.18679687228797`*^24\), > 1.447609719431064`*^24, \(-1.5688840125551723`*^24\), > 1.51129470844226`*^24, \(-1.2929086666244018`*^24\), > 9.804286814731637`*^23, \(-6.570867584057313`*^23\), > 3.8768688571383356`*^23, \(-2.0035257611223482`*^23\), > 9.01004052138053`*^22, \(-3.495373870315845`*^22\), > 1.1556808440293227`*^22, \(-3.200121970208588`*^21\), > 7.230361392464404`*^20, \(-1.2804361627651423`*^20\), > 1.664350897746699`*^19, \(-1.407456330327663`*^18\), > 5.782285160715823`*^16, 3.2628184`*^7}\) > In[10]:= > Table[Simplify[Take[a1, -j].Take[a2, -j]] /. x -> 2 + 2 Cos[2.0*Pi/7], {j, > 1, > 32}] > Out[10]= > \!\({2.3299464415234008`*^16, \(-6.225166642017307`*^17\), > 8.095823791432834`*^18, \(-6.827018853514098`*^19\), > 4.1956608970898866`*^20, \(-2.0024019788866653`*^21\), > 7.721985589213777`*^21, \(-2.471965161406457`*^22\), > 6.6968805035540325`*^22, \(-1.557504319097963`*^23\), > 3.1434645609556626`*^23, \(-5.551191511538763`*^23\), > 8.630908489745317`*^23, \(-1.1867968722879702`*^24\), > 1.447609719431064`*^24, \(-1.5688840125551725`*^24\), > 1.5112947084422592`*^24, \(-1.2929086666244018`*^24\), > 9.804286814731632`*^23, \(-6.570867584057316`*^23\), > 3.876868857138329`*^23, \(-2.0035257611223496`*^23\), > 9.010040521380392`*^22, \(-3.495373870315801`*^22\), > 1.155680844029254`*^22, \(-3.20012197020816`*^21\), > 7.230361392454027`*^20, \(-1.2804361627534713`*^20\), > 1.6643508976590756`*^19, \(-1.4074563292969969`*^18\), > 5.782285067577335`*^16, 3.297766455913909`*^8}\) > > The only term which is different on both lists is the last one! This means > that approximation is not the issue, since all the truncated polynomials > handle very large numbers all the time. > Now, if you really want to have a complete picture of madness, try > FullSimplify instead of Simplify: > > In[11]:= > Simplify[f[x]] /. x -> 2 + 2 Cos[2.0*Pi/7] > Out[11]= > 3.297766455913909`*^8 > In[12]:= > FullSimplify[f[x]] /. x -> 2 + 2 Cos[2.0*Pi/7] > Out[12]= > -2.6508595821182593`*^6 > > The situation becomes worse every time, and my conclusion is that this > problem deserves close examination by some of the great gurus in this group. > > Tomas Garza > Mexico City > > > > > > > ----- Original Message ----- > From: "Jacqueline Zizi" <jazi at club-internet.fr> To: mathgroup at smc.vnet.net > To: <mathgroup at smc.vnet.net> > Sent: Monday, January 22, 2001 2:10 AM > Subject: [mg26804] [mg26778] Who can help me? > > > > I'm working on this polynomial linked to the truncated icosahedron: > > > > -17808196677858180 x + > > 138982864440593250 x^2 - 527304830550920588 x^3 + > > 1301702220253454898 x^4 - 2358155595920193382 x^5 + > > 3347791850698681436 x^6 - 3878279506351645237 x^7 + > > 3764566420106299695 x^8 - 3117324712750504866 x^9 + > > 2229873533973727384 x^10 - 1390372935143028255 x^11 + > > 760794705528035032 x^12 - 367240961907017721 x^13 + > > 157018216115380477 x^14 - 59650776196609992 x^15 + > > 20179153653354540 x^16 - 6086251542996201 x^17 + > > 1637007669992780 x^18 - 392300104078670 x^19 + > > 83589038962550 x^20 - 15782712151030 x^21 + > > 2628070696678 x^22 - 383466859804 x^23 + 48618908986 x^24 - > > 5298021900 x^25 + 489095520 x^26 - 37516324 x^27 + > > 2327268 x^28 - 112200 x^29 + 3945 x^30 - 90 x^31 + x^32; > > > > I'm interested at its value for x-> 2 + 2 Cos [2 [Pi] / 7]. > > Taking N [] gives 3.2628184 10^7 > > > > But if I simplify first and then take N[] it gives -0.0390625 + > > 0.0195313 [ImaginaryI] > > > > As it is a polynomial with integer coefficients, and 2 + 2 Cos [2 pi / > > 7] is real too, the result should be real. So I prefer the 1st > > solution, but for another reason, I'm not so sure of this result. > > > > A Plot between 3 and 3.5, does not help me neither to check if the > > value 3.2628184 is good and If I do : polynomial /. x -> 3.2628184 > > 10^7, it gives 2.7225238332205106`^240 > > > > How could I check the result 3.2628184 10^7 ? > > > > Thanks > > > > Jacqueline > > > > > > >