Re: Normal vector on a surface
- To: mathgroup at smc.vnet.net
- Subject: [mg29314] Re: [mg29269] Normal vector on a surface
- From: Daniel Lichtblau <danl at wolfram.com>
- Date: Wed, 13 Jun 2001 03:10:46 -0400 (EDT)
- References: <200106090708.DAA29328@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Matthias.Bode at oppenheim.de wrote: > > Dear Colleagues, > > I have a function in the variables x1 and y1: > > Out[27]= > 19.74211746962547 - 61.78321746073334* > x1 + 70.84823523445556*x1^2 - > 34.64681309362152*x1^3 + > 5.822595947190386*x1^4 - > 61.783217460733795*y1 + > 188.56171712734522*x1*y1 - > 208.7457484391798*x1^2*y1 + > 99.21114279328117*x1^3*y1 - > 16.223098505477388*x1^4*y1 + > 70.8482352344551*y1^2 - > 208.7457484391805*x1*y1^2 + > 225.08774661852397*x1^2*y1^2 - > 103.5151716236312*x1^3*y1^2 + > 16.351931921608763*x1^4*y1^2 - > 34.64681309362163*y1^3 + > 99.21114279328117*x1*y1^3 - > 103.51517162363109*x1^2*y1^3 + > 45.654124756950296*x1^3*y1^3 - > 6.928857192755963*x1^4*y1^3 + > 5.822595947190411*y1^4 - > 16.22309850547743*x1*y1^4 + > 16.351931921608763*x1^2*y1^4 - > 6.928857192755952*x1^3*y1^4 + > 1.0137658500940734*x1^4*y1^4 > > This function yields a surface very similar to Sin[x1*y1] for 1<x1<3 and > 1<y1<3. > > Now I want to calculate (how?) and draw (how?) several "Normalenvektors" > (sorry, I do not know the English termini technici) which should sit smugly > - like palisades - on the plane tangential to the surface. > > The "Normalenvektor" N in point P - according to Bronstein-Semendjajew - is > a unity vector perpendicular to the tangential plane; its accompanying > vectors e1 and e2 on the plane form a "right-handed system". N, e1 and e2 > are referred to as the "accompanying tripod". - I understand the words but > not their meaning. > > My attempts with Calculus`VectorAnalysis` and PlotVectorField3D &c. failed > dismally. > > Thank you for your assistance, > > Matthias Bode > Sal. Oppenheim jr. & Cie. KGaA > Koenigsberger Strasse 29 > D-60487 Frankfurt am Main > GERMANY > Tel.: +49(0)69 71 34 53 80 > Mobile: +49(0)172 6 74 95 77 > Fax: +49(0)69 71 34 6380 > E-mail: matthias.bode at oppenheim.de > Internet: http://www.oppenheim.de Your surface is given in the form z = f[x,y] so you can take -{D[f[x,y],x], Df[x,y],y], -1} as an upward-pointing normal vector, and then normalize to get unit length. The code below will do this. normalvector[x_,y_]:= With[ {vec = -{D[f[x1,y1],x1],D[f[x1,y1],y1],-1} /. {x1->x,y1->y}}, vec / Sqrt[vec.vec]] Daniel Lichtblau Wolfram Research
- References:
- Normal vector on a surface
- From: Matthias.Bode@oppenheim.de
- Normal vector on a surface