Re: combination of two ContourPlots - impossible?
- To: mathgroup at smc.vnet.net
- Subject: [mg33701] Re: combination of two ContourPlots - impossible?
- From: Jens-Peer Kuska <kuska at informatik.uni-leipzig.de>
- Date: Tue, 9 Apr 2002 01:02:13 -0400 (EDT)
- Organization: Universitaet Leipzig
- References: <a8rh5b$b62$1@smc.vnet.net>
- Reply-to: kuska at informatik.uni-leipzig.de
- Sender: owner-wri-mathgroup at wolfram.com
Hi, how do you like cnt = Table[z, {z, -500, 500, 1000/24}]; style = Which[# < 0, Dashing[{0.005}], 0 == #, Dashing[{}], # > 0, {RGBColor[1, 0, 0], Dashing[{0.005}]}] & /@ cnt; Block[{a = 0.5, b = 0.5, c = 0.5, y = 0}, ContourPlot[ Evaluate[(x*(x - a) + y*y + z*z)/(Sqrt[(x*x + y*y + z*z)^3]* Sqrt[((x - a)^2 + y*y + z*z)^3]) - ((x - a)*(x - a - b - c) + y*y + z*z)/(Sqrt[((x - a)^2 + y*y + z*z)^3]* Sqrt[((x - a - b - c)^2 + y*y + z*z)^3]) - (x*(x - a - b) + y*y + z*z)/(Sqrt[(x*x + y*y + z*z)^3]* Sqrt[((x - a - b)^2 + y*y + z*z)^3]) + ((x - a - b)*(x - a - b - c) + y*y + z*z)/(Sqrt[((x - a - b)^2 + y*y + z*z)^3]* Sqrt[((x - a - b - c)^2 + y*y + z*z)^3])], {x, -1, 2.5}, {z, 0.001, -1}, ContourShading -> False, PlotRange -> {-500, 500}, Contours -> cnt, PlotPoints -> 90, ContourStyle -> style, AspectRatio -> Automatic, ImageSize -> {800, 450}, FrameLabel -> {"\n Profile [m]", "\n depth [m]"}, RotateLabel -> True, PlotRange -> {{-1, 2.5}, {0, -1}}, AspectRatio -> .5, DefaultFont -> {"Times-Bold", 14}, FormatType -> OutputForm] ] Or you can convert the COntourGraphics[] into a Graphics, select the lines and combine the lines in one Graphics[] object. Regards Jens Harald von der Osten-Woldenburg wrote: > > Hi, > > first of all: Thanks a lot for your help. It was really a stupid > question ( ** --> ^), sorry... > > But I have still a problem and whatever I tried in the last hours, I had > no success. I want two combine two ContourPlots (plot1: negative values, > plot2: positive values) and I did the following: > > -----------START---------------------- > > Needs["Graphics`Colors`"]; > Needs["Graphics`Graphics`"]; > > majorTicks = > Table[{x, x, {0.015, 0}, {GrayLevel[0.], Thickness[0.003]}}, {x, > -1.5, > 2.5, .5}]; > > minorTicks = > Table[{x, "", {0.012, 0}, {GrayLevel[0.], Thickness[0.0025]}}, {x, > -1.5, > 2.5, .25}]; > > obenunten = Join[majorTicks, minorTicks]; > > majorTicks = > Table[{x, x, {0.015, 0}, {GrayLevel[0.], Thickness[0.003]}}, {x, -1, > > 0, .2}]; > > minorTicks = > Table[{x, "", {0.012, 0}, {GrayLevel[0.], Thickness[0.0025]}}, {x, > -1, > 0, .1}]; > > rechtslinks = Join[majorTicks, minorTicks]; > > a = 0.5; b = 0.5; c = 0.5; y = 0; > > negpart = > ContourPlot[ > Evaluate[(x*(x - a) + y*y + z*z)/(Sqrt[(x*x + y*y + z*z)^3]* > Sqrt[((x - a)^2 + y*y + z*z)^3]) - ((x - a)*(x - a - b - > c) + > y*y + z*z)/(Sqrt[((x - a)^2 + y*y + z*z)^3]* > Sqrt[((x - a - b - c)^2 + y*y + z*z)^3]) - (x*(x - a - b) > + > y*y + z*z)/(Sqrt[(x*x + y*y + z*z)^3]* > Sqrt[((x - a - b)^2 + y*y + z*z)^3]) + ((x - a - b)*(x - a > - b - > c) + y*y + z*z)/(Sqrt[((x - a - b)^2 + y*y + > z*z)^3]* > Sqrt[((x - a - b - c)^2 + y*y + z*z)^3])], {x, -1, 2.5}, > {z, > 0.001, -1}, ContourShading -> False, PlotRange -> {-500, 00}, > Contours -> 12, PlotPoints -> 150, > ContourStyle -> Dashing[{0.005, 0.006}], AspectRatio -> Automatic, > ImageSize -> {800, 450}, FrameStyle -> {Thickness[0.003]}, Frame -> > True, > FrameTicks -> {obenunten, rechtslinks, obenunten, rechtslinks}, > FrameLabel -> {"\n Profile [m]", "\n depth [m]"}, RotateLabel -> > True, > PlotRange -> {{-1, 2.5}, {0, -1}}, AspectRatio -> .5, > DefaultFont -> {"Times-Bold", 14}, FormatType -> OutputForm] > > pospart = > ContourPlot[ > Evaluate[(x*(x - a) + y*y + z*z)/(Sqrt[(x*x + y*y + z*z)^3]* > Sqrt[((x - a)^2 + y*y + z*z)^3]) - ((x - a)*(x - a - b - > c) + > y*y + z*z)/(Sqrt[((x - a)^2 + y*y + z*z)^3]* > Sqrt[((x - a - b - c)^2 + y*y + z*z)^3]) - (x*(x - a - b) > + > y*y + z*z)/(Sqrt[(x*x + y*y + z*z)^3]* > Sqrt[((x - a - b)^2 + y*y + z*z)^3]) + ((x - a - b)*(x - a > - b - > c) + y*y + z*z)/(Sqrt[((x - a - b)^2 + y*y + > z*z)^3]* > Sqrt[((x - a - b - c)^2 + y*y + z*z)^3])], {x, -1, 2.5}, > {z, > 0.001, -1}, ContourShading -> False, PlotRange -> {00, 500}, > Contours -> 12, PlotPoints -> 150, AspectRatio -> Automatic, > ImageSize -> {800, 450}, FrameStyle -> {Thickness[0.003]}, Frame -> > True, > FrameTicks -> {obenunten, rechtslinks, obenunten, rechtslinks}, > FrameLabel -> {"\n Profile [m]", "\n depth [m]"}, RotateLabel -> > True, > PlotRange -> {{-1, 2.5}, {0, -1}}, AspectRatio -> .5, > DefaultFont -> {"Times-Bold", 14}, FormatType -> OutputForm] > > ois = Show[negpart, pospart] > > -------THE END---------------------- > > why is this possible, or is there another way to do this? > > Again thanks a lot, > Harry > > -- > Harald von der Osten-Woldenburg > Geophysical Prospection of Archaeological Sites > National Heritage Department of Baden-Wuerttemberg > Silberburgstrasse 193, D-70178 Stuttgart > Fax Office: +49-(0)711-1694-707 > http://www.lb.netic.de/hvdosten : Geomagnetics, Geoelectrics, Radar, EMI