Trying to solve a sum
- To: mathgroup at smc.vnet.net
- Subject: [mg36070] Trying to solve a sum
- From: Constantine <celster at cs.technion.ac.il>
- Date: Thu, 15 Aug 2002 02:36:21 -0400 (EDT)
- Sender: owner-wri-mathgroup at wolfram.com
Hi, I'm trying to solve the following sum: Sum[ p^(n-k) (1-p)^k Binomial[n, k] * (1+ n -2 k) / (1+n-k), {k, 0, Ceiling[n/2]} ] Pls, if anyone knows if that sum has a simple solution, I'll be pleasant for a hint how to find it. Thanks in advance. Constantine. P.S. The Mathematica produces the following output for this sum: n 1 1 + n Out[1]= p ((-) (-1 + 2 p) - p 1 Ceiling[n/2] > ((-1 + -) (-1 + p) Gamma[1 + n] p n > ((1 + n) Gamma[n - Ceiling[-]] 2 n n -1 + p > Hypergeometric2F1[1, -n + Ceiling[-], 2 + Ceiling[-], ------] - 2 2 p n > 2 Gamma[1 + n - Ceiling[-]] 2 n n -1 + p > Hypergeometric2F1[1, 1 - n + Ceiling[-], 2 + Ceiling[-], ------]) 2 2 p n n > ) / (p Gamma[n - Ceiling[-]] Gamma[1 + n - Ceiling[-]] 2 2 n > Gamma[2 + Ceiling[-]])) 2 Constantine Elster Computer Science Dept. Technion I.I.T. Office: Taub 411 Tel: +972 4 8294375