Mathematica 9 is now available
Services & Resources / Wolfram Forums
-----
 /
MathGroup Archive
2002
*January
*February
*March
*April
*May
*June
*July
*August
*September
*October
*November
*December
*Archive Index
*Ask about this page
*Print this page
*Give us feedback
*Sign up for the Wolfram Insider

MathGroup Archive 2002

[Date Index] [Thread Index] [Author Index]

Search the Archive

loop problem?

  • To: mathgroup at smc.vnet.net
  • Subject: [mg33035] loop problem?
  • From: Takayuki MAKINO <tmakino at spectro.ujf-grenoble.fr>
  • Date: Wed, 27 Feb 2002 00:47:49 -0500 (EST)
  • Sender: owner-wri-mathgroup at wolfram.com

Hello, everybody,

Thanks everyone who response my previous question.
A new problem was happened.
I have executed the nb file below cited. But, I received the following
message from the mathematica. This is as follows:

""Mathematica has detected a possible internal error. If possible, report the error to 
support at wolfram.com, quoting "Assertion 'nboxesToSend == 1' failed at matheditio.c:1508", 
and describe in as much detail as possible what you were doing when the error occurred.""

Here I would like to cite my nb file, but it is not exactly the same
one that I encountered that message. This is because the original
nb file is too lengthy. I apologize that this might be
a long letter. I am very happy if someone test the
nb file again and let me know about the results.... I think that
it must be better to be done before sending a bug report to
wolfram. Maybe.

Thanks in advance, au revoir. takayuki

----------------------------------------------------------
Notebook[{
Cell[BoxData[{
    RowBox[{\(Clear[theMax, theMin]\), ";", 
      StyleBox[\(Clear[K, c, \ h, je, \ me, \ et1, \ elt1, ei, \ mex1, mim1, 
          hbar, omt1, \ omlt1, damp1]\),
        FontSize->9], 
      StyleBox[";",
        FontSize->9], 
      StyleBox[\(Clear[et2, \ elt2, \ mex2, mim2, omt2, \ omlt2, damp2]\),
        FontSize->9], 
      StyleBox[";",
        FontSize->9], 
      StyleBox[\(Clear[chisqlist, \ resid, \ chisq]\),
        FontSize->9], 
      StyleBox[";",
        FontSize->9], 
      StyleBox[\(Clear[Vminloc]\),
        FontSize->9], 
      StyleBox[";",
        FontSize->9]}], "\[IndentingNewLine]", 
    StyleBox[
      RowBox[{
        RowBox[{\(Clear[\[Alpha]Blist, \ \[Alpha]Alist, \ \[Omega]Blist, \ \
\[Omega]Alist, \ \[Gamma]Blist, \ \[Gamma]Alist, Wcoef, expMax, expMin]\), 
          ";", 
          RowBox[{"(*", " ", 
            RowBox[{
              RowBox[{"Clear", "[", 
                RowBox[{"theMax", ",", "theMin", ",", 
                  FormBox["NewVar1",
                    "InputForm"], ",", 
                  FormBox[
                    RowBox[{"NewVar2", ",", 
                      FormBox[
                        RowBox[{"NewVar3", ",", 
                          FormBox["NewVar4",
                            "InputForm"]}],
                        "InputForm"]}],
                    "InputForm"]}], "]"}], ";"}], "*)"}], \(chisqlist = {}\), 
          ";", \(\[Alpha]Blist = {}\), ";", " ", \(\[Alpha]Alist = {}\), ";", 
          " ", \(\[Omega]Blist = {}\), ";", " ", \(\[Omega]Alist = {}\), ";", 
          " ", \(\[Gamma]Blist = {}\), ";", " ", \(\[Gamma]Alist = {}\), 
          ";"}], "\[IndentingNewLine]"}],
      FontSize->9], "\[IndentingNewLine]", 
    StyleBox[\(c\  = \ 2.998*10^8; \ h = \ 1.055*10^\(-34\);\),
      FontSize->9], "\n", 
    StyleBox[\(je\  = \ 1.602*10^\(-19\); \ me = 9.109*10^\(-31\); ei = 8.1; 
      mex1 = 1.230*me; mim1 = mex1\ c^2\ /\ je; hbar\  = \ h/\ je; 
      mex2 = 1.230*me; mim2 = mex2\ c^2\ /\ je;\),
      FontSize->9], "\[IndentingNewLine]", 
    RowBox[{
      StyleBox[\(A\[Chi]\[Mu]i\[Nu] = 3.3784\),
        FontSize->9], 
      StyleBox[";",
        FontSize->9], 
      StyleBox[\(A\[Chi]\[Mu]a\[Chi] = 3.3728\),
        FontSize->9], 
      StyleBox[";",
        FontSize->9], 
      StyleBox[\(B\[Chi]\[Mu]i\[Nu] = 3.3937\),
        FontSize->9], 
      StyleBox[";",
        FontSize->9], 
      StyleBox[" ",
        FontSize->9], \(expMin = 2511.5\), ";", "  ", \(expMax = 10334\), 
      ";", \(\[Alpha]ASet = {1.6*10\^\(-3\), 4.6*10\^\(-3\), 3*10\^\(-3\)}\), 
      ";", \(\[Alpha]BSet = {9.6*10\^\(-3\), 12.6*10\^\(-3\), 3*10\^\(-3\)}\),
       ";", \(\[Gamma]ASet = {1.5*10\^\(-3\), 2.7*10\^\(-3\), 
          1.2*10\^\(-3\)}\), 
      ";"}], "\[IndentingNewLine]", \(\[Gamma]BSet = {2.2*10\^\(-3\), 
          2.8*10\^\(-3\), 0.6*10\^\(-3\)};\), "\[IndentingNewLine]", 
    StyleBox[\(Wcoef = {4578.7, 4500.6, 3.368, 0.020086, \(-2126.5\), 
            3.3721, \(-0.0026009\), 3408, 3.3724, 0.0029873, \(-5752.3\), 
            3.3787, 0.0031906, 4721.3, 3.3795, 0.0041165, \(-2384.7\), 
            3.3923, 0.0054822, \(-972.52\), 3.3986, 0.0087828};\),
      FontSize->9], "\n", 
    StyleBox[\(ExpFn[
            enr_] := \((Wcoef[\([1]\)] + 
              Wcoef[\([2]\)]*
                Exp[\(-\((\(enr - \
Wcoef[\([3]\)]\)\/Wcoef[\([4]\)]\()\^2\)\)\)] + 
              Wcoef[\([5]\)]*
                Exp[\(-\((\(enr - \
Wcoef[\([6]\)]\)\/Wcoef[\([7]\)]\()\^2\)\)\)] + 
              Wcoef[\([8]\)]*
                Exp[\(-\((\(enr - Wcoef[\([9]\)]\)\/Wcoef[\([10]\)]\()\^2\)\)\
\)] + Wcoef[\([11]\)]*
                Exp[\(-\((\(enr - \
Wcoef[\([12]\)]\)\/Wcoef[\([13]\)]\()\^2\)\)\)] + 
              Wcoef[\([14]\)]*
                Exp[\(-\((\(enr - \
Wcoef[\([15]\)]\)\/Wcoef[\([16]\)]\()\^2\)\)\)] + 
              Wcoef[\([17]\)]*
                Exp[\(-\((\(enr - \
Wcoef[\([18]\)]\)\/Wcoef[\([19]\)]\()\^2\)\)\)] + 
              Wcoef[\([20]\)]*
                Exp[\(-\((\(enr - \
Wcoef[\([21]\)]\)\/Wcoef[\([22]\)]\()\^2\)\)\)])\);\),
      FontSize->9], "\[IndentingNewLine]", 
    RowBox[{\(formulae[omlt_, omt_, damp_]\  := \ 
          N[\((c*hbar/enr)\)^2*K\  - \ 
              ei\ *\ \((1 + 
                    omlt/\((omt + \((h*\(K/2\)/mex1)\) - \((enr/hbar)\) - 
                          I\ damp*0.5/hbar)\))\)];\), 
      "\n"}], "\[IndentingNewLine]", 
    RowBox[{
      " ", \(Do[\ \ \ \ \ \ \[IndentingNewLine]elt1 = \[Alpha]Ai; 
          damp1 = \ \[Gamma]Ai; 
          et1 = \ A\[Chi]\[Mu]i\[Nu] - elt1 - damp1/4; \ elt2 = \[Alpha]Bi; \ 
          damp2 = \ \[Gamma]Bi; et2 = \ B\[Chi]\[Mu]i\[Nu] - elt2 - damp2/4; 
          omt1 = \ et1/hbar\ ; \ omlt1 = \ elt1/hbar; omt2 = \ et2/hbar\ ; \ 
          omlt2 = \ 
            elt2/hbar; \[IndentingNewLine]\[IndentingNewLine]solution1\  = \ 
            Solve[formulae[omlt1, omt1, damp1] == 0, \ K]; 
          solution1\  = \ K\  /. solution1; 
          solution1[\([1]\)]\  = N[solution1[\([1]\)]]; 
          solution1[\([2]\)]\  = N[solution1[\([2]\)]]; 
          siki7\  = solution1[\([1]\)]; 
          siki8\  = solution1[\([2]\)]; \[Delta]cA1 = 
            ei\ *\ \((1 + 
                  omlt1/\((omt1 + \((h*\(siki7/2\)/mex1)\) - \((enr/hbar)\) - 
                        I\ damp1*0.5/
                            hbar)\))\); \
\[IndentingNewLine]\[IndentingNewLine]\[Delta]cA1 = 
            Evaluate[N[\[Delta]cA1]]; \[IndentingNewLine]\[Delta]fnA1[
              enr_]\  := \ 
            Evaluate[
              N[\[Delta]cA1]]; \
\[IndentingNewLine]\[IndentingNewLine]\[Delta]cA2 = 
            Expand[ei\ *\ \((1 + 
                    omlt1/\((omt1 + \((h*\(siki8/2\)/mex1)\) - \((enr/
                              hbar)\) - 
                          I\ damp1*0.5/hbar)\))\)]; \[Delta]cA2 = 
            Evaluate[N[\[Delta]cA2]]; \[Delta]fnA2[enr_]\  := \ 
            Evaluate[N[\[Delta]cA2]]; \[IndentingNewLine]neff1 = \ 
            Evaluate[\((Sqrt[\[Delta]fnA1[enr]]*Sqrt[\[Delta]fnA2[enr]] + 
                    ei)\)*\((\((Sqrt[\[Delta]fnA1[enr]]\  + \ 
                        Sqrt[\[Delta]fnA2[enr]])\)^\(-1\))\)]; \ 
          nefffn1[enr_]\  := \ 
            Evaluate[N[Expand[neff1]]]; \n\[IndentingNewLine]solution2\  = \ 
            Solve[formulae[omlt2, omt2, damp2] == 0, \ K]; 
          solution2\  = \ K\  /. solution2; 
          solution2[\([1]\)]\  = N[solution2[\([1]\)]]; 
          solution2[\([2]\)]\  = N[solution2[\([2]\)]]; 
          siki7\  = solution2[\([1]\)]; 
          siki8\  = solution2[\([2]\)]; \[Delta]cB1 = 
            Expand[
              ei\ *\ \((1 + 
                    omlt2/\((omt2 + \((h*\(siki7/2\)/mex2)\) - \((enr/
                              hbar)\) - 
                          I\ damp2*0.5/
                              hbar)\))\)]; \[IndentingNewLine]\[Delta]cB2 = 
            N[\[Delta]cB2]; \[Delta]fnB1[enr_]\  := \ 
            Expand[\[Delta]cB1]; \[IndentingNewLine]\[Delta]cB2 = 
            Expand[ei\ *\ \((1 + 
                    omlt2/\((omt2 + \((h*\(siki8/2\)/mex2)\) - \((enr/
                              hbar)\) - 
                          I\ damp2*0.5/hbar)\))\)]; \[Delta]cB2 = 
            Expand[N[\[Delta]cB2]]; \[Delta]fnB2[enr_]\  := \ 
            Expand[\[Delta]cB2]; 
          neff2 = Evaluate[\((Sqrt[\[Delta]fnB1[enr]]*
                      Sqrt[\[Delta]fnB2[enr]] + 
                    ei)\)*\((Sqrt[\[Delta]fnB1[enr]] + 
                      Sqrt[\[Delta]fnB2[enr]])\)^\(-1\)]; 
          nefffn2[enr_] := 
            N[Expand[
                neff2]]; \
\[IndentingNewLine]\[IndentingNewLine]reflectivityfunc[enr_]\  := \ 
            Evaluate[\((Abs[\((\((1 - 
                              N[nefffn1[enr]])\)*\((1 + 
                                N[nefffn1[
                                    enr]])\)^\(-1\))\)])\)^2\  - \ \((Abs[\((\
\((1 - ei^0.5)\)*\((1 + ei^0.5)\)^\(-1\))\)])\)^2 + \ \((Abs[\((\((1 - 
                              nefffn2[enr])\)*\((1 + 
                                nefffn2[
                                  enr])\)^\(-1\))\)])\)^2]; \
\[IndentingNewLine]\[IndentingNewLine]\ 
          Plot[N[reflectivityfunc[enr2]], {enr2, 3.36, 
              3.41}]; \[IndentingNewLine]enr = A\[Chi]\[Mu]a\[Chi]; 
          theMax = N[reflectivityfunc[enr]]; Clear[enr]; 
          enr = B\[Chi]\[Mu]i\[Nu]; \[IndentingNewLine]theMin = 
            N[reflectivityfunc[enr]]; Clear[enr]; NewVar1 = theMax - theMin; 
          NewVar2 = expMax - expMin; NewVar3 = NewVar2/NewVar1; 
          NewVar4 = expMin - theMin; \[IndentingNewLine]resid = 
            NSum[\((NewVar3*N[reflectivityfunc[enr2]] + NewVar4 - 
                    ExpFn[enr2])\)^2, {enr2, 3.36, 3.41, 
                1*10\^\(-2\)}]; \[IndentingNewLine]\[IndentingNewLine]chisq = 
            Apply[Plus, resid]; \[IndentingNewLine]\[Alpha]Blist\  = \ 
            Append[\[Alpha]Blist, N[elt2]]; \ \[Alpha]Alist = \ 
            Append[\[Alpha]Alist, N[elt1]]; \ \[Omega]Blist\  = 
            Append[\[Omega]Blist, N[et2]]; \ \[Omega]Alist = 
            Append[\[Omega]Alist, N[et1]]; \ \[Gamma]Blist = 
            Append[\[Gamma]Blist, N[damp2]]; \[Gamma]Alist = 
            Append[\[Gamma]Alist, 
              N[damp1]]; \[IndentingNewLine]\(\(chisqlist = 
              Append[chisqlist, 
                
                chisq];\), {\[Alpha]Ai, \[Alpha]ASet[\([1]\)], \
\[Alpha]ASet[\([2]\)], \[Alpha]ASet[\([3]\)]}, {\[Alpha]Bi, \
\[Alpha]BSet[\([1]\)], \[Alpha]BSet[\([2]\)], \[Alpha]BSet[\([3]\)]}, {\
\[Gamma]Ai, \[Gamma]ASet[\([1]\)], \[Gamma]ASet[\([2]\)], \
\[Gamma]ASet[\([3]\)]}, {\[Gamma]Bi, \[Gamma]BSet[\([1]\)], \
\[Gamma]BSet[\([2]\)], \[Gamma]BSet[\([3]\)]}\)];\), "   ", 
      "\[IndentingNewLine]"}], "\[IndentingNewLine]", 
    RowBox[{
      " ", \(Plot[
        NewVar3*N[reflectivityfunc[enr2]] + NewVar4, {enr2, 3.36, 3.41}]; 
      Plot[N[ExpFn[enr2]], {enr2, 3.36, 3.41}];\)}]}], "Input",
  FontSize->14]
},
FrontEndVersion->"4.0 for Microsoft Windows",
ScreenRectangle->{{0, 1024}, {0, 689}},
WindowSize->{1016, 659},
WindowMargins->{{0, Automatic}, {Automatic, 0}},
PrintingCopies->1,
PrintingPageRange->{Automatic, Automatic},
Magnification->1.25
]



  • Prev by Date: Re: removing rules from function definitions
  • Previous by thread: Solve (on Mathematica 4.1 Windows XP)?