Services & Resources / Wolfram Forums
-----
 /
MathGroup Archive
2002
*January
*February
*March
*April
*May
*June
*July
*August
*September
*October
*November
*December
*Archive Index
*Ask about this page
*Print this page
*Give us feedback
*Sign up for the Wolfram Insider

MathGroup Archive 2002

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: Simple Trigonometric Integrals

  • To: mathgroup at smc.vnet.net
  • Subject: [mg32370] Re: Simple Trigonometric Integrals
  • From: stagat at mrcsb.com (Bob Stagat)
  • Date: Wed, 16 Jan 2002 03:30:59 -0500 (EST)
  • References: <a20n0a$4i4$1@smc.vnet.net>
  • Sender: owner-wri-mathgroup at wolfram.com

Interesting... consider this...

In[17]:=junk=a c Cos[t]/(g s) + b q Cos[2 t]/(c f) +c Cos[3 t]/(d a) +
   d f Cos[4 t]/(h a n) + e q Cos[5t]/(g a) + f l Cos[6 t]/(w r m) +  
 g b Cos[7 t]/(o n x) + h Sin[t]/(b c) +i Sin[2 t]/(h e r) +    j y
Sin[3 t]/(l p) + d k Sin[4 t]/(j c) + l m a Sin[5 t]/(f s b h)+     m
p Sin[6 t]/(k j) + q n Sin[7 t]/(x c) ;

In[18]:=Timing[Integrate[#,{t,0,2\[Pi]}]&/@junk]

Out[18]= {0.14 Second,0}

In[19]:=Timing[Integrate[junk,{t,0,2\[Pi]}]]

Out[19]= {149.49 Second,0}

-- 
Joe Helfand <jhelfand at wam.umd.edu> wrote in message news:<a20n0a$4i4$1 at smc.vnet.net>...

<snip>

> An example of what I am talking about, just
> try the following:
> 
> In[687]:=
> Joe = a c Cos[t]/(g s) + b q Cos[2 t]/(c f) + c Cos[3 t]/(d a) +
>       d f Cos[4 t]/(h a n) + e q Cos[5t]/(g a) + f l Cos[6 t]/(w r m) +
>       g b Cos[7 t]/(o n x) + h Sin[t]/(b c) + i Sin[2 t]/(h e r) +
>       j y Sin[3 t]/(l p) + d k Sin[4 t]/(j c) + l m a Sin[5 t]/(f s b h)
> +
>       m p Sin[6 t]/(k j) + q n Sin[7 t]/(x c);
> 
> In[688]:=
> Integrate[Joe, {t, 0, 2 Pi}]
> 
> and you willl see it takes a long time to integrate.


  • Prev by Date: Re: How To Change A Rule
  • Next by Date: Taylor Series Expansions
  • Previous by thread: Re: Simple Trigonometric Integrals
  • Next by thread: RE: Simple Trigonometric Integrals