[Date Index]
[Thread Index]
[Author Index]
Re: Plotting problem
*To*: mathgroup at smc.vnet.net
*Subject*: [mg35341] Re: Plotting problem
*From*: BobHanlon at aol.com
*Date*: Tue, 9 Jul 2002 06:47:50 -0400 (EDT)
*Sender*: owner-wri-mathgroup at wolfram.com
In a message dated 7/8/02 4:39:12 AM, shodgen at mindspring.com writes:
>I'm a total Mathematica newbie, and I'm trying to get it to plot a simple
>rational eq. in such a way that it indicates where missing points are.
>Since I'm not sure how you'd prefer the eq. expressed, I've typed in in
>the
>parents so there can be no question of where the denominator is, as well
>as
>a cell expression.
>
>(3 x^2 - 5 x + 2)/(x - 1)
>
>Cell[BoxData[
> FractionBox[
> RowBox[{
> RowBox[{"3",
> SuperscriptBox["x", "2"]}], "-",
> RowBox[{"5", "x"}], "+", "2"}],
> RowBox[{"x", "-", "1"}]]], "Input"]
>
>When I Plot[], this is just draws a straight line. There is no indication
>where the hole is. How can I get this "fully correct" graph?
>
f1[x_] := (3*x^2 - 5*x + 2)/(x - 1);
f2[x_] := Evaluate[Simplify[f1[x]]];
Plot[f2[x], {x, 0, 5},
{PlotStyle -> RGBColor[0, 0, 1],
Epilog->{
RGBColor[1, 0, 0],
AbsolutePointSize[4],
((Point[{x, f2[x]}]/.#)&/@
Solve[Denominator[f1[x]]==0, x])}}];
f1[x_] := (3*x^3-14*x^2+17*x-6)/
((x - 1)*(x-3));
f2[x_] := Evaluate[Simplify[f1[x]]];
Plot[f2[x], {x, 0, 5},
{PlotStyle -> RGBColor[0, 0, 1],
Epilog->{
RGBColor[1, 0, 0],
AbsolutePointSize[4],
((Point[{x, f2[x]}]/.#)&/@
Solve[Denominator[f1[x]]==0, x])}}];
Bob Hanlon
Chantilly, VA USA
Prev by Date:
**RE: Plotting problem**
Next by Date:
**Re: Yet another Version 4.2 Integration howler**
Previous by thread:
**RE: Plotting problem**
Next by thread:
**RE: Plotting problem**
| |