Re: how can I solve this with mathematica?
- To: mathgroup at smc.vnet.net
- Subject: [mg34883] Re: [mg34816] how can I solve this with mathematica?
- From: Tomas Garza <tgarza01 at prodigy.net.mx>
- Date: Tue, 11 Jun 2002 05:00:59 -0400 (EDT)
- References: <200206080921.FAA26123@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Easy. But you must first learn to use the proper parentheses and brackets following the conventions in Mathematica. In[1]:= c = Sum[s[n, m]*Cos[p*(m + 1/2)*(Pi/Y)]*Cos[q*(n + 1/2)*(Pi/X)], {n, 0, X - 1}, {m, 0, Y - 1}]; In[2]:= c /. {X -> 4, Y -> 4, p -> 0, q -> 0} Out[2]= s[0, 0] + s[0, 1] + s[0, 2] + s[0, 3] + s[1, 0] + s[1, 1] + s[1, 2] + s[1, 3] + s[2, 0] + s[2, 1] + s[2, 2] + s[2, 3] + s[3, 0] + s[3, 1] + s[3, 2] + s[3, 3] In[3]:= c /. {X -> 4, Y -> 4, p -> 1, q -> 0} Out[3]= Cos[Pi/8]*s[0, 0] + Cos[(3*Pi)/8]*s[0, 1] + Cos[(5*Pi)/8]*s[0, 2] + Cos[(7*Pi)/8]*s[0, 3] + Cos[Pi/8]*s[1, 0] + Cos[(3*Pi)/8]*s[1, 1] + Cos[(5*Pi)/8]*s[1, 2] + Cos[(7*Pi)/8]*s[1, 3] + Cos[Pi/8]*s[2, 0] + Cos[(3*Pi)/8]*s[2, 1] + Cos[(5*Pi)/8]*s[2, 2] + Cos[(7*Pi)/8]*s[2, 3] + Cos[Pi/8]*s[3, 0] + Cos[(3*Pi)/8]*s[3, 1] + Cos[(5*Pi)/8]*s[3, 2] + Cos[(7*Pi)/8]*s[3, 3] etc. Tomas Garza Mexico City ----- Original Message ----- From: "daldosch" <daldosch at aon.at> To: mathgroup at smc.vnet.net Subject: [mg34883] [mg34816] how can I solve this with mathematica? > How can I solve the following problem? > > > (*********************************************************************** > > Mathematica-Compatible Notebook > > This notebook can be used on any computer system with Mathematica 3.0, > MathReader 3.0, or any compatible application. The data for the notebook > starts with the line of stars above. > > To get the notebook into a Mathematica-compatible application, do one of > the following: > > * Save the data starting with the line of stars above into a file > with a name ending in .nb, then open the file inside the application; > > * Copy the data starting with the line of stars above to the > clipboard, then use the Paste menu command inside the application. > > Data for notebooks contains only printable 7-bit ASCII and can be > sent directly in email or through ftp in text mode. Newlines can be > CR, LF or CRLF (Unix, Macintosh or MS-DOS style). > > NOTE: If you modify the data for this notebook not in a Mathematica- > compatible application, you must delete the line below containing the > word CacheID, otherwise Mathematica-compatible applications may try to > use invalid cache data. > > For more information on notebooks and Mathematica-compatible > applications, contact Wolfram Research: > web: http://www.wolfram.com > email: info at wolfram.com > phone: +1-217-398-0700 (U.S.) > > Notebook reader applications are available free of charge from > Wolfram Research. > ***********************************************************************) > > (*CacheID: 232*) > > > (*NotebookFileLineBreakTest > NotebookFileLineBreakTest*) > (*NotebookOptionsPosition[ 6491, 135]*) > (*NotebookOutlinePosition[ 7142, 158]*) > (* CellTagsIndexPosition[ 7098, 154]*) > (*WindowFrame->Normal*) > > > > Notebook[{ > Cell[BoxData[ > \(c = > \(\[Sum]\+\(n = 0\)\%\(X - 1 > \)\(\[Sum]\+\(m = 0\)\%\(Y - 1\){ > s \((n, m)\)*cos \((p \((m + 1\/2)\) \[Pi]\/Y)\)*cos > \((q \((n + 1\/2)\) \[Pi]\/X)\)}\n\t\nX\) = 4\), Y = 4\ , > 0 \[LessEqual] n \[GreaterEqual] 3, 0 \[LessEqual] m \[GreaterEqual] 3, > 0 \[LessEqual] p \[GreaterEqual] 3, > 0 \[LessEqual] q \[GreaterEqual] 3\)], "Input"], > > Cell[BoxData[ > \(how\ can\ I\ get\ a\ result\ like\ the\ \(following\ ?\)\)], "Input"], > > Cell[BoxData[{ > \(for\ p = 0, q = 0\), > \(c \((0, 0)\) = {\n > s \((0, 0)\)*cos \((0)\)*cos \((0)\) + > s \((0, 1)\)*cos \((0)\)*cos \((0)\) + > s \((0, 2)\)*cos \((0)\)*cos \((0)\) + > s \((0, 3)\)*cos \((0)\)*cos \((0)\) + \n > s \((1, 0)\)*cos \((0)\)*cos \((0)\) + > s \((1, 1)\)*cos \((0)\)*cos \((0)\) + > s \((1, 2)\)*cos \((0)\)*cos \((0)\) + > s \((1, 3)\)*cos \((0)\)*cos \((0)\) + \n > s \((2, 0)\)*cos \((0)\)*cos \((0)\) + > s \((2, 1)\)*cos \((0)\)*cos \((0)\) + > s \((2, 2)\)*cos \((0)\)*cos \((0)\) + > s \((2, 3)\)*cos \((0)\)*cos \((0)\) + \n > s \((3, 0)\)*cos \((0)\)*cos \((0)\) + > s \((3, 1)\)*cos \((0)\)*cos \((0)\) + > s \((3, 2)\)*cos \((0)\)*cos \((0)\) + > s \((3, 3)\)*cos \((0)\)*cos \((0)\)}\n\t\), > \(for\ p = 1, q = 0\), > \(c = > \(\((1, 0)\) = {\n\t > \(\(\(\(\(\(\({s \((0, 0)\)*cos > \((1 \((0 + 1\/2)\) \[Pi]\/4*cos \((0)\) + > s \((0, 1)\)*cos > \((1 \((1 + 1\/2)\) \[Pi]\/4*cos > \((0)\) + \n\t\t > s \((0, 2)\)*cos > \((1 \((2 + 1\/2)\) \[Pi]\/4*cos > \((0)\) + > s \((0, 3)\)*cos > \((1 \((3 + 1\/2)\) \[Pi]\/4*cos > \((0)\) + \n\ \t > s \((1, 0)\)*cos > \((1 \((0 + 1\/2)\) \[Pi]\/4*cos > \((0)\) + s \((1, 1)\)*cos > \((1 \((1 + 1\/2)\) \[Pi]\/4*cos > \((0)\) + \n\t\ts \((1, 2)\)*cos > \((1 \((2 + 1\/2)\) \[Pi]\/4*cos \((0) > \) + s \((1, 3)\)*cos \((1 \((3 + > 1\/2)\) \[Pi]\/4*cos \((0)\) + \n\t\ > s \((2, 0)\)*cos \((1 \((0 + 1\/2)\) > \[Pi]\/4*cos \((0)\) + s \((2, > 1)\)*cos \((1 \((1 + 1\/2)\) > \[Pi]\/4*cos \((0)\) + \n\t\ts \((2, > 2)\)*cos \((1 \((2 + 1\/2)\) > \[Pi]\/4*cos \((0)\) + s \((2, > 3)\)*cos \((1 \((3 + 1\/2)\) > \[Pi]\/4*cos \((0)\) + \t\n\t\ s > \((3, 0)\)*cos \((1 \((0 + 1\/2)\) > \[Pi]\/4*cos \((0)\) + s \((3, > 1)\)*cos \((1 \((1 + 1\/2)\) > \[Pi]\/4*cos \((0)\) + \n\t\ts \((3, > 2)\)*cos \((1 \((2 + 1\/2)\) > \[Pi]\/4*cos \((0)\) + s \((3, > 3)\)*cos \((1 \((3 + 1\/2)\) > \[Pi]\/4*cos > \((0) > \)\)\)\)\)\)\)\)\)\)\)\)\)\)\)\)\)} > \t\t\t\t\n > \t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\ > \t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t ... \) ... \) ... > \) ... \) ... \) ... \) ... \)\n\t\t\tfor\ p = 1, > q = 1\t\t\t\n\t\t\ts \((0, 0)\)*cos > \((1 \((0 + 1\/2)\) \[Pi]\/4*cos > \((1 \((0 + 1\/2)\) \[Pi]\/4 + \n\t\t\t > s \((1, 0)\)*cos > \((1 \((0 + 1\/2)\) \[Pi]\/4*cos > \((\(\(\(1 \((1 + 1\/2)\) \[Pi]\/4 ... \) ... > \) ... . > \)\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\ > \t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\)\)\)\)\)\)}], "Input"] > }, > FrontEndVersion->"Microsoft Windows 3.0", > ScreenRectangle->{{0, 800}, {0, 544}}, > WindowSize->{772, 478}, > WindowMargins->{{-11, Automatic}, {-1, Automatic}} > ] > > > (*********************************************************************** > Cached data follows. If you edit this Notebook file directly, not using > Mathematica, you must remove the line containing CacheID at the top of > the file. The cache data will then be recreated when you save this file > from within Mathematica. > ***********************************************************************) > > (*CellTagsOutline > CellTagsIndex->{} > *) > > (*CellTagsIndex > CellTagsIndex->{} > *) > > (*NotebookFileOutline > Notebook[{ > Cell[1709, 49, 424, 8, 105, "Input"], > Cell[2136, 59, 89, 1, 30, "Input"], > Cell[2228, 62, 4259, 71, 590, "Input"] > } > ] > *) > > > > > (*********************************************************************** > End of Mathematica Notebook file. > ***********************************************************************) >
- References:
- how can I solve this with mathematica?
- From: daldosch <daldosch@aon.at>
- how can I solve this with mathematica?