RE: RE: Definitions of the functions
- To: mathgroup at smc.vnet.net
- Subject: [mg34993] RE: [mg34977] RE: [mg34963] Definitions of the functions
- From: "DrBob" <majort at cox-internet.com>
- Date: Tue, 18 Jun 2002 02:48:36 -0400 (EDT)
- Reply-to: <drbob at bigfoot.com>
- Sender: owner-wri-mathgroup at wolfram.com
I think UnitStep would be easier to use if we could define the function this way: y2[x_] := x UnitStep[-x - 5] + x^2 UnitStep[x + 5]UnitStep[18 - x] + Sin[x]UnitStep[x - 18] or y3[x_] := x UnitStep[-x - 5] + x^2 UnitStep[x + 5, 18 - x] + Sin[x]UnitStep[x - 18] Either of these gives the same function values (except at -5 and 18), but Integrate doesn't evaluate either of them. Bobby -----Original Message----- From: David Park [mailto:djmp at earthlink.net] To: mathgroup at smc.vnet.net Subject: [mg34993] [mg34977] RE: [mg34963] Definitions of the functions Pawes, For plotting and arithmetic... y[x_] /; x < -5 := x y[x_] /; -5 <= x < 18 := x*x y[x_] := Sin[x] Plot[y[x], {x, -10, 30}, PlotRange -> All]; For calculus... Clear[y]; y[x_] = x(1 - UnitStep[x + 5]) + x*x(UnitStep[x + 5] - UnitStep[x - 18]) + Sin[x]UnitStep[x - 18] // Simplify (-x^2 + Sin[x])*UnitStep[-18 + x] + x*(1 + (-1 + x)*UnitStep[5 + x]) g[x_] = Integrate[y[x], x] // Simplify (1/6)*(3*x^2 - 2*(-5832 + x^3 - 3*Cos[18] + 3*Cos[x])* UnitStep[-18 + x] + (325 - 3*x^2 + 2*x^3)* UnitStep[5 + x]) Plot[g[x], {x, -10, 30}, PlotRange -> All]; David Park djmp at earthlink.net http://home.earthlink.net/~djmp/ > From: Pawe³ Ga³ecki [mailto:pmg at wp.pl] To: mathgroup at smc.vnet.net > > > How do I define a function that is described by different > formulas depending > of the interval which the argument is given in???? > For example: > > y=x for -inf<x<-5 > y=x*x for -5<=x<18 > y=sin x for all the remaining values of x. > > > Anybody got a clue??? > > Thanks, > Pawe³ Ga³ecki >