MathGroup Archive 2002

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: integral tranform definition

  • To: mathgroup at smc.vnet.net
  • Subject: [mg33154] Re: integral tranform definition
  • From: Jens-Peer Kuska <kuska at informatik.uni-leipzig.de>
  • Date: Wed, 6 Mar 2002 01:55:28 -0500 (EST)
  • Organization: Universitaet Leipzig
  • References: <a61uf4$gin$1@smc.vnet.net>
  • Reply-to: kuska at informatik.uni-leipzig.de
  • Sender: owner-wri-mathgroup at wolfram.com

Hi,

can you be so kind and post correct Mathematica syntax if you write
mathematics ? You can't avoid to use function but
you can define pure functions on fly with:

Kern[n_, y_, x_] = Sin[n x y]

MyTransf[n_, func_, y_] := 
  Integrate[Kern[n, y, x] func[x], {x, 0, 2 Pi}] // FullSimplify

g[t_, m_] := MyTransf[m, Cos[5*#] &, t]

m = 4; g[z, m]

m = 2;
MyTransf[m, g[#, 4] &, t]


Regards
  Jens


Roberto Brambilla wrote:
> 
> Hi all math-friends,
> 
> I have a little problem in integral transform definition.
> I want to define the following integral transform depending on a parameter n
> 
> g(y,n)=integral[K(n,y,x)f(x)dx] (a<=x<=b)
> 
> where, for example, Kern(n,y,x)=sin(n x y)  in (0-2Pi) square.
> 
> So a I build the function
> 
> MyTransf[n_, func_, y_] :=  Integrate[Kern[n, y, x] func[x],
>                             {x, 0, 2 Pi}] // FullSimplify
> 
> and try it
> 
> test1[x_]:=Cos[5 x]
> g[t_, m_] := Evaluate[MyTransf[m, test1, t]]
> 
> m=4; g[z,m]
> (out)  8 z (Sin[4 pi z])^2/(16 z2-25)
> 
> So far so good. Now I want to apply MyTransf again to this result, changing
> the parameter.
> I have to define an intermediate function without parameters and sigle
> variable
> 
> test2[x_]:=g[x,4]
> 
> and then
> 
> m=2;
> Evaluate[MyTransf[m, test2, t]]
> (out) 1/16((-CosIntegral[.................etc.........
> 
> 
> My problem is to avoid the definition of the intermediate function.
> How can define MyTrans so that I can write simply
> 
> MyTransf[n, func[m1,m2,...,x], y]
> 
> i.e a definition where I can use funcions with explicited parameter(s)
> m1,m2..,
> the name of the input variable (here x) and the name of the output variable
> (here y)?
> Having this definition, I could write (my final wish)
> 
> MyTransf[n2, MyTransf[n1, f1[m1,x], y], z]
> 
> and then find for each n1 the vale of n2 (if exist) for which this double
> transform
> correspond to other transform, i.e. I want to test if these transforms act
> like a group.
> Please,help me!
> Rob.
> 
> Roberto Brambilla
> CESI
> Via Rubattino 54
> 20134 Milano
> tel +39.02.2125.5875
> fax +39.02.2125.5492
> rlbrambilla at cesi.it


  • Prev by Date: Re: Quadratic non-linear ODE.
  • Next by Date: RE: How to transform x axis on ListPlot?
  • Previous by thread: integral tranform definition
  • Next by thread: initializing notebook defaults..problems