Re: integral tranform definition
- To: mathgroup at smc.vnet.net
- Subject: [mg33154] Re: integral tranform definition
- From: Jens-Peer Kuska <kuska at informatik.uni-leipzig.de>
- Date: Wed, 6 Mar 2002 01:55:28 -0500 (EST)
- Organization: Universitaet Leipzig
- References: <a61uf4$gin$1@smc.vnet.net>
- Reply-to: kuska at informatik.uni-leipzig.de
- Sender: owner-wri-mathgroup at wolfram.com
Hi, can you be so kind and post correct Mathematica syntax if you write mathematics ? You can't avoid to use function but you can define pure functions on fly with: Kern[n_, y_, x_] = Sin[n x y] MyTransf[n_, func_, y_] := Integrate[Kern[n, y, x] func[x], {x, 0, 2 Pi}] // FullSimplify g[t_, m_] := MyTransf[m, Cos[5*#] &, t] m = 4; g[z, m] m = 2; MyTransf[m, g[#, 4] &, t] Regards Jens Roberto Brambilla wrote: > > Hi all math-friends, > > I have a little problem in integral transform definition. > I want to define the following integral transform depending on a parameter n > > g(y,n)=integral[K(n,y,x)f(x)dx] (a<=x<=b) > > where, for example, Kern(n,y,x)=sin(n x y) in (0-2Pi) square. > > So a I build the function > > MyTransf[n_, func_, y_] := Integrate[Kern[n, y, x] func[x], > {x, 0, 2 Pi}] // FullSimplify > > and try it > > test1[x_]:=Cos[5 x] > g[t_, m_] := Evaluate[MyTransf[m, test1, t]] > > m=4; g[z,m] > (out) 8 z (Sin[4 pi z])^2/(16 z2-25) > > So far so good. Now I want to apply MyTransf again to this result, changing > the parameter. > I have to define an intermediate function without parameters and sigle > variable > > test2[x_]:=g[x,4] > > and then > > m=2; > Evaluate[MyTransf[m, test2, t]] > (out) 1/16((-CosIntegral[.................etc......... > > > My problem is to avoid the definition of the intermediate function. > How can define MyTrans so that I can write simply > > MyTransf[n, func[m1,m2,...,x], y] > > i.e a definition where I can use funcions with explicited parameter(s) > m1,m2.., > the name of the input variable (here x) and the name of the output variable > (here y)? > Having this definition, I could write (my final wish) > > MyTransf[n2, MyTransf[n1, f1[m1,x], y], z] > > and then find for each n1 the vale of n2 (if exist) for which this double > transform > correspond to other transform, i.e. I want to test if these transforms act > like a group. > Please,help me! > Rob. > > Roberto Brambilla > CESI > Via Rubattino 54 > 20134 Milano > tel +39.02.2125.5875 > fax +39.02.2125.5492 > rlbrambilla at cesi.it