FullSimplify problem on Mathematica 4.1.2.0
- To: mathgroup at smc.vnet.net
- Subject: [mg33549] FullSimplify problem on Mathematica 4.1.2.0
- From: uhap023 at alpha1.rhbnc.ac.uk (Tom Crane)
- Date: Fri, 29 Mar 2002 06:14:03 -0500 (EST)
- Organization: Dept. Physics, Royal Holloway, University of London
- Sender: owner-wri-mathgroup at wolfram.com
Hello All, I have encountered the following problem with FullSimplify[] on Mathematica 4.1.2.0. The problem is to FullSimplify the eigenvalues of a simple (real, and in this case symmetric), 3x3 matrix. as follows; Rmat = {{Ra + \[Rho]ac, 0, -\[Rho]ca}, {0, Rb + \[Rho]ac, -\[Rho]ca}, {-\[Rho]ac, -\[Rho]ac, Rc + 2*\[Rho]ca}} {ra, rb, rc} = Eigenvalues[Rmat] ra = FullSimplify[ra] The FullSimplify[] operation never finishes. Under Linux with the virtual memory ulimited to 300MB to prevent it completely running the system into the ground, on a 333MHz AMD K6-2 machine with 192MB RAM, the job runs for about 8 hours and then exits with; "No more memory available. Mathematica kernel has shut down. Try quitting other applications and then retry." This calculation fails similarly to complete after running all night, on a 1.4GHz machine running the same version of Mathematica but under Windows98. However, under Mathematica 4.0/Windows on only a 133MHz machine the calculation completes in about 8hours with the following successful result; \!\(1\/6\ \((2\ \((Ra + Rb + Rc + 2\ \[Rho]ac + 2\ \[Rho]ca)\) + \((2\ 2\^\(1/3\)\ \((Ra\^2 + Rb\^2 + Rc\^2 - 2\ Rc\ \[Rho]ac + \[Rho]ac\^2 + Rb\ \((\(-Rc\) + \[Rho]ac - 2\ \[Rho]ca)\) + 4\ Rc\ \[Rho]ca + 2\ \[Rho]ac\ \[Rho]ca + 4\ \[Rho]ca\^2 - Ra\ \((Rb + Rc - \[Rho]ac + 2\ \[Rho]ca)\))\))\)/\((2\ Ra\^3 + 2\ Rb\^3 + 2\ \ Rc\^3 - 6\ Rc\^2\ \[Rho]ac + 6\ Rc\ \[Rho]ac\^2 - 2\ \[Rho]ac\^3 + 12\ Rc\^2\ \ \[Rho]ca - 6\ Rc\ \[Rho]ac\ \[Rho]ca - 6\ \[Rho]ac\^2\ \[Rho]ca + 24\ Rc\ \ \[Rho]ca\^2 + 12\ \[Rho]ac\ \[Rho]ca\^2 + 16\ \[Rho]ca\^3 - 3\ Rb\^2\ \((Rc - \ \[Rho]ac + 2\ \[Rho]ca)\) - 3\ Ra\^2\ \((Rb + Rc - \[Rho]ac + 2\ \[Rho]ca)\) \ - 3\ Rb\ \((Rc\^2 - 2\ Rc\ \[Rho]ac + \[Rho]ac\^2 + 4\ Rc\ \[Rho]ca - \ \[Rho]ac\ \[Rho]ca + 4\ \[Rho]ca\^2)\) - 3\ Ra\ \((Rb\^2 + Rc\^2 - 2\ Rc\ \ \[Rho]ac + \[Rho]ac\^2 + 4\ Rc\ \[Rho]ca - \[Rho]ac\ \[Rho]ca + 4\ \ \[Rho]ca\^2 - 4\ Rb\ \((Rc - \[Rho]ac + 2\ \[Rho]ca)\))\) + \[Sqrt]\((\(-4\)\ \ \((Ra\^2 + Rb\^2 + Rc\^2 - 2\ Rc\ \[Rho]ac + \[Rho]ac\^2 + Rb\ \((\(-Rc\) + \ \[Rho]ac - 2\ \[Rho]ca)\) + 4\ Rc\ \[Rho]ca + 2\ \[Rho]ac\ \[Rho]ca + 4\ \ \[Rho]ca\^2 - Ra\ \((Rb + Rc - \[Rho]ac + 2\ \[Rho]ca)\))\)\^3 + \((\(-2\)\ \ Ra\^3 - 2\ Rb\^3 + 3\ Rb\^2\ \((Rc - \[Rho]ac + 2\ \[Rho]ca)\) + 3\ Ra\^2\ \ \((Rb + Rc - \[Rho]ac + 2\ \[Rho]ca)\) + 3\ Rb\ \((Rc\^2 - 2\ Rc\ \[Rho]ac + \ \[Rho]ac\^2 + 4\ Rc\ \[Rho]ca - \[Rho]ac\ \[Rho]ca + 4\ \[Rho]ca\^2)\) + 3\ \ Ra\ \((Rb\^2 + Rc\^2 - 2\ Rc\ \[Rho]ac + \[Rho]ac\^2 + 4\ Rc\ \[Rho]ca - \ \[Rho]ac\ \[Rho]ca + 4\ \[Rho]ca\^2 - 4\ Rb\ \((Rc - \[Rho]ac + 2\ \ \[Rho]ca)\))\) - 2\ \((Rc\^3 - \[Rho]ac\^3 - 3\ Rc\^2\ \((\[Rho]ac - 2\ \ \[Rho]ca)\) - 3\ \[Rho]ac\^2\ \[Rho]ca + 6\ \[Rho]ac\ \[Rho]ca\^2 + 8\ \ \[Rho]ca\^3 + 3\ Rc\ \((\[Rho]ac\^2 - \[Rho]ac\ \[Rho]ca + 4\ \[Rho]ca\^2)\))\ \))\)\^2)\))\)\^\(1/3\) + 2\^\(2/3\)\ \((2\ Ra\^3 + 2\ Rb\^3 + 2\ Rc\^3 - 6\ Rc\^2\ \[Rho]ac + \ 6\ Rc\ \[Rho]ac\^2 - 2\ \[Rho]ac\^3 + 12\ Rc\^2\ \[Rho]ca - 6\ Rc\ \[Rho]ac\ \ \[Rho]ca - 6\ \[Rho]ac\^2\ \[Rho]ca + 24\ Rc\ \[Rho]ca\^2 + 12\ \[Rho]ac\ \ \[Rho]ca\^2 + 16\ \[Rho]ca\^3 - 3\ Rb\^2\ \((Rc - \[Rho]ac + 2\ \[Rho]ca)\) - \ 3\ Ra\^2\ \((Rb + Rc - \[Rho]ac + 2\ \[Rho]ca)\) - 3\ Rb\ \((Rc\^2 - 2\ Rc\ \ \[Rho]ac + \[Rho]ac\^2 + 4\ Rc\ \[Rho]ca - \[Rho]ac\ \[Rho]ca + 4\ \ \[Rho]ca\^2)\) - 3\ Ra\ \((Rb\^2 + Rc\^2 - 2\ Rc\ \[Rho]ac + \[Rho]ac\^2 + 4\ \ Rc\ \[Rho]ca - \[Rho]ac\ \[Rho]ca + 4\ \[Rho]ca\^2 - 4\ Rb\ \((Rc - \[Rho]ac \ + 2\ \[Rho]ca)\))\) + \[Sqrt]\((\(-4\)\ \((Ra\^2 + Rb\^2 + Rc\^2 - 2\ Rc\ \ \[Rho]ac + \[Rho]ac\^2 + Rb\ \((\(-Rc\) + \[Rho]ac - 2\ \[Rho]ca)\) + 4\ Rc\ \ \[Rho]ca + 2\ \[Rho]ac\ \[Rho]ca + 4\ \[Rho]ca\^2 - Ra\ \((Rb + Rc - \[Rho]ac \ + 2\ \[Rho]ca)\))\)\^3 + \((\(-2\)\ Ra\^3 - 2\ Rb\^3 + 3\ Rb\^2\ \((Rc - \ \[Rho]ac + 2\ \[Rho]ca)\) + 3\ Ra\^2\ \((Rb + Rc - \[Rho]ac + 2\ \[Rho]ca)\) \ + 3\ Rb\ \((Rc\^2 - 2\ Rc\ \[Rho]ac + \[Rho]ac\^2 + 4\ Rc\ \[Rho]ca - \ \[Rho]ac\ \[Rho]ca + 4\ \[Rho]ca\^2)\) + 3\ Ra\ \((Rb\^2 + Rc\^2 - 2\ Rc\ \ \[Rho]ac + \[Rho]ac\^2 + 4\ Rc\ \[Rho]ca - \[Rho]ac\ \[Rho]ca + 4\ \ \[Rho]ca\^2 - 4\ Rb\ \((Rc - \[Rho]ac + 2\ \[Rho]ca)\))\) - 2\ \((Rc\^3 - \ \[Rho]ac\^3 - 3\ Rc\^2\ \((\[Rho]ac - 2\ \[Rho]ca)\) - 3\ \[Rho]ac\^2\ \ \[Rho]ca + 6\ \[Rho]ac\ \[Rho]ca\^2 + 8\ \[Rho]ca\^3 + 3\ Rc\ \((\[Rho]ac\^2 \ - \[Rho]ac\ \[Rho]ca + 4\ \[Rho]ca\^2)\))\))\)\^2)\))\)\^\(1/3\))\)\) Has anybody else come across this problem? Is there a memory leak in version 4.2.1.0? Are there any fixes? Regards Tom. -- Tom Crane, Dept. Physics, Royal Holloway, University of London, Egham Hill, Egham, Surrey, TW20 0EX, England. Email: uhap023 at vms.rhbnc.ac.uk SPAN: 19.875 Fax: +44 (0) 1784 472794