MathGroup Archive 2002

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: double integral

  • To: mathgroup at smc.vnet.net
  • Subject: [mg34201] Re: double integral
  • From: Jens-Peer Kuska <kuska at informatik.uni-leipzig.de>
  • Date: Thu, 9 May 2002 05:16:04 -0400 (EDT)
  • Organization: Universitaet Leipzig
  • References: <abaenr$s00$1@smc.vnet.net>
  • Reply-to: kuska at informatik.uni-leipzig.de
  • Sender: owner-wri-mathgroup at wolfram.com

Hi,

Mathematica returns nonsense because you enter nonsens. 
The correct order of integration is

Integrate[x^2, {x, y, 6/y}, {y, 0, Sqrt[6]}]

you have to integrate *first*  over x and than over y
and not integrate over y and than over x with bounds
that depend on y.

Regards
  Jens

Higinio Ramos wrote:
> 
> Why does Integrate fail in solving the double integral?
> In[1]:=Integrate[x^2,{y,0,Sqrt[6]},{x,y,6/y}]
> Out[1]= -9
> 
> Of course, If I do the evaluations in two steps, the result is
> correct:(the integral does not converge)
> In[3]:=
>                 2         6
> Integrate[x , {x, y, -}]
>                           y
> Out[3]=
>         3
> 72   y
> -- - --
>  3   3
> y
> 
> In[4]:=
>                      3
>              72   y
> Integrate[-- - --, {y, 0, Sqrt[6]}]
>               3   3
>           y
> \!\(Integrate::"idiv" :  "Integral of \!\(72\/y\^3 - y\^3\/3\) does not
> converge on \!\({0, \\@6}\)."\)
> Out[4]=
>                       3
>              72   y
> Integrate[-- - --, {y, 0, Sqrt[6]}]
>                3   3
>              y


  • Prev by Date: Re: Sequence and Or
  • Next by Date: Re: Sequence and Or
  • Previous by thread: double integral
  • Next by thread: Quick question about Interval[]