Re: Removed[] pop-visiting explanation?
- To: mathgroup at smc.vnet.net
- Subject: [mg34276] Re: [mg34265] Removed[] pop-visiting explanation?
- From: Daniel Lichtblau <danl at wolfram.com>
- Date: Mon, 13 May 2002 05:54:22 -0400 (EDT)
- References: <200205120726.DAA26031@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Vladimir Bondarenko wrote: > > Hello, > > In Mathematica 4.1, the answers to several thousands of > integrals involve Removed["$$Failure"] . For example, > you can see it in the following simplest inputs > > Integrate[Log[1 - z^2] Cos[Sqrt[z]], {z, -1, 1}]// InputForm > > (-8*E^2 + 4*(-2 + EulerGamma - CosIntegral[-1 + I] + 2*CosIntegral[I] - > CosIntegral[1 + I] - 2*ExpIntegralEi[1] + ExpIntegralEi[2] - Log[4] + > I*SinIntegral[-1 + I] - (2*I)*SinIntegral[I] + I*SinIntegral[1 + I]) + > > E*(Removed["$$Failure"] - 4*(EulerGamma*(Cos[1] + Sin[1]) + Sin[1]*(- > > 2*CosIntegral[1] + CosIntegral[2] - Log[4] - 2*SinIntegral[1] + > SinIntegral[2]) - Cos[1]*(4 + 2*CosIntegral[1] - CosIntegral[2] + > Log[4] - 2*SinIntegral[1] + SinIntegral[2]))))/(2*E) > > Integrate[Log[1 - z^2] Sin[Sqrt[z]], {z, -1, 1}] > Integrate[Log[1 - z^2] Cosh[Sqrt[z]], {z, -1, 1}] > Integrate[Log[1 - z^2] Sinh[Sqrt[z]], {z, -1, 1}] > Integrate[Log[1 - z^2] Sinh[Sqrt[-z]], {z, -1, 1}] > ....................................................................... > ....................................................................... > ....................................................................... > > I tried to ferret out more about it, but the Help Browser does not > include it, and I found only > > ?? Removed > > "Removed[string] is printed to indicate a symbol that has been removed." > > Attributes[Removed] = {Protected} > > Why this unusual bug occurs? I mean, what language constructions might > be involved in or responsible for it? > > How can I get more information about the stuff like this? > > What is the simplest way to program in Mathematica this case? > > Can anybody drop me at least a couple of words? > > Thanks in advance! > > Vladimir Bondarenko Alot of Integrate code is written in Mathematica and makes use of $$Failure to indicate problems that arise in certain attempts. Not all the code correctly handles this (which is a bug). Somewhere prior to returning the result, Remove is applied to all instances of $$Failure (this may be another bug, I'm not certain). Hence what you see. I've recently been going over alot of Integrate bugs of this sort. Our development version now gives: In[14]:= Integrate[Log[1 - z^2] Cos[Sqrt[z]], {z, -1, 1}]// InputForm Out[14]//InputForm= Sqrt[2*Pi]*(BesselI[-3/2, 1] - BesselJ[-3/2, 1])*(-2 + Log[4]) In[15]:= In[15]:= N[%] Out[15]= -1.24446 In[16]:= NIntegrate[Log[1 - z^2] Cos[Sqrt[z]], {z, -1, 1}]// InputForm Out[16]//InputForm= -1.262993846600215 + 0.*I In[26]:= In[26]:= Integrate[Log[1 - z^2] Sin[Sqrt[z]], {z, -1, 1}] // InputForm Out[26]//InputForm= (Sqrt[Pi/2]*(-15*Pi*(BesselI[3/2, 1] + I*BesselJ[3/2, 1]) + BesselI[3/2, 1]*((52 - 92*I) + (30*I)*Log[8]) + 2*BesselJ[3/2, 1]*((-46 + 26*I) + 15*Log[8])))/15 In[27]:= N[%] Out[27]= -0.475055 - 0.628458 I In[29]:= NIntegrate[Log[1 - z^2] Sin[Sqrt[z]], {z, -1, 1}] // InputForm Out[29]//InputForm= -0.4763959406176462 - 0.6298381554069934*I and similarly for the other examples. Daniel Lichtblau Wolfram Research
- References:
- Removed[] pop-visiting explanation?
- From: Vladimir Bondarenko <vvb@mail.strace.net>
- Removed[] pop-visiting explanation?