Re: Complex Numbers: Plotting Equations
- To: mathgroup at smc.vnet.net
- Subject: [mg37711] Re: [mg37684] Complex Numbers: Plotting Equations
- From: Vladimir Bondarenko <vvb at mail.strace.net>
- Date: Sat, 9 Nov 2002 00:29:32 -0500 (EST)
- In-reply-to: <200211080716.CAA07416@smc.vnet.net>
- References: <200211080716.CAA07416@smc.vnet.net>
- Reply-to: Vladimir Bondarenko <vvb at mail.strace.net>
- Sender: owner-wri-mathgroup at wolfram.com
kevin.stone at brainbashers.com (Kevin Stone) wrote on Friday, November 08, 2002, 3:16:00 AM : KS> How do I go about plotting equations of the form: KS> 1. |z-2i| = 6 Plot[Abs[z - 2I] - 6, {z, -3, 3}] By the way, enjoy with a remarkable shape of Plot[Abs[z - 2I] - 6, {z, -100, 100}] Can you explain it? KS> 2. (2z-Conjugate(z))^2 = -6(z + Conjugate(z) Plot[(2z - Conjugate[z])^2 + 6(z + Conjugate[z]), {z, -3, 3}] Plot[(2z - Conjugate[z])^2 + 6(z + Conjugate[z]), {z, -30, 30}] Plot[(2z - Conjugate[z])^2 + 6(z + Conjugate[z]), {z, -300, 300}] KS> In addition, how can you solve the following in terms of exponentials? KS> z^6 = 6 + 3i Do you mean this? Rationalize[N[Abs[6 + 3 I]Exp[I Arg[6 + 3 I]]]] 6 + 3 I Solve[z^6 == Abs[6 + 3 I]Exp[I Arg[6 + 3 I]], z] {{z -> -(3^(1/6)*5^(1/12)*E^((I/6)*ArcTan[1/2]))}, {{z -> {z -> 3^(1/6)*5^(1/12)*E^((I/6)*ArcTan[1/2])}, {z -> -((-1)^(1/3)*3^(1/6)*5^(1/12)*E^((I/6)*ArcTan[1/2]))}, {z -> {z -> (-1)^(1/3)*3^(1/6)*5^(1/12)*E^((I/6)*ArcTan[1/2])}, {z -> -((-1)^(2/3)*3^(1/6)*5^(1/12)*E^((I/6)*ArcTan[1/2]))}, {z -> {z -> (-1)^(2/3)*3^(1/6)*5^(1/12)*E^((I/6)*ArcTan[1/2])}} Or something else? Best wishes, Vladimir Bondarenko Email: vvb at mail.strace.net Web : http://www.CAS-testing.org/ (under development, 95% ready) http://maple.bug-list.org/ (under development, 20% ready)
- References:
- Complex Numbers: Plotting Equations
- From: kevin.stone@brainbashers.com (Kevin Stone)
- Complex Numbers: Plotting Equations