How do I plot this and get their values
- To: mathgroup at smc.vnet.net
- Subject: [mg37907] How do I plot this and get their values
- From: Ashish Ojha <aojha at neuron.cpmc.columbia.edu>
- Date: Tue, 19 Nov 2002 03:51:19 -0500 (EST)
- Organization: Columbia University
- Sender: owner-wri-mathgroup at wolfram.com
I have an equation which has two parts and each equation works for different times from the same time set(the superscripts te is the time-end and superscripts ts is time-start). How do I combine both of them into one plot and see their numerical output together Can any one help me? Ashish Below are the given details. FIRST PART EQU1:= \!\(\* TagBox[\(\((m\ \((2\ \[ExponentialE]\^\(\(-\[Theta]\_i\)\ t\_k\%e\) - 2\ \[ExponentialE]\^\(\(-\[Theta]\_i\)\ t\_k\%s\) - \[Theta]\_i\ \ \((t\_k\%e - t\_k\%s)\)\ \((\(-2\) + \[Theta]\_i\ \((t\_k\%e + t\_k\%s)\))\))\))\)/\((2\ \[Theta]\_i\%3\ \ \((t\_k\%e - t\_k\%s)\))\)\), DisplayForm]\) where m = 0.594145 Subscript[\[Theta], i] = 0.15102000585123| SubsuperscriptBox[t, k, s] = {0, 0.3333, 0.6667, 1.0000} SubsuperscriptBox[t, k, e] = { 0.3333, 0.6667, 1.0000, 2} SECOND PART EQU2:=\!\(\* TagBox[\(\(1\/\(\[Theta]\_i\ \((t\_k\%e - t\_k\%s)\)\)\) \((\(A\_1\ \((\((\[ExponentialE]\^\(\(-\ \[Lambda]\_1\)\ t\_k\%e\) - \[ExponentialE]\^\(\(-\[Lambda]\_1\)\ \ t\_k\%s\))\)\ \[Theta]\_i - \[ExponentialE]\^\(\(-ts\)\ \[Lambda]\_1\)\ \((\ \[ExponentialE]\^\(\[Theta]\_i\ \((ts - t\_k\%e)\)\) - \[ExponentialE]\^\(\ \[Theta]\_i\ \((ts - t\_k\%s)\)\))\)\ \[Lambda]\_1)\)\)\/\(\((\[Theta]\_i - \ \[Lambda]\_1)\)\ \[Lambda]\_1\) + \(A\_2\ \((\((\[ExponentialE]\^\(\(-\ \[Lambda]\_2\)\ t\_k\%e\) - \[ExponentialE]\^\(\(-\[Lambda]\_2\)\ \ t\_k\%s\))\)\ \[Theta]\_i - \[ExponentialE]\^\(\(-ts\)\ \[Lambda]\_2\)\ \((\ \[ExponentialE]\^\(\[Theta]\_i\ \((ts - t\_k\%e)\)\) - \[ExponentialE]\^\(\ \[Theta]\_i\ \((ts - t\_k\%s)\)\))\)\ \[Lambda]\_2)\)\)\/\(\((\[Theta]\_i - \ \[Lambda]\_2)\)\ \[Lambda]\_2\) + \(A\_3\ \((\((\[ExponentialE]\^\(\(-\ \[Lambda]\_3\)\ t\_k\%e\) - \[ExponentialE]\^\(\(-\[Lambda]\_3\)\ \ t\_k\%s\))\)\ \[Theta]\_i - \[ExponentialE]\^\(\(-ts\)\ \[Lambda]\_3\)\ \((\ \[ExponentialE]\^\(\[Theta]\_i\ \((ts - t\_k\%e)\)\) - \[ExponentialE]\^\(\ \[Theta]\_i\ \((ts - t\_k\%s)\)\))\)\ \[Lambda]\_3)\)\)\/\(\((\[Theta]\_i - \ \[Lambda]\_3)\)\ \[Lambda]\_3\))\)\), DisplayForm]\) where m = 0.594145 Subscript[\[Theta], i] = 0.15102000585123| Subscript[A,j -> {1, 2, 3}] = {0.0949, 2.163, 0.0005} Subscript[\[Lambda],j -> {1, 2, 3}] = {0.080,12.664,0.017} ts = 0.594 SubsuperscriptBox[t, k, s] = {2,3,4,6,8,10,15,20,30,40,50,60,70,80,90,100,110,120} SubsuperscriptBox[t, k, e] = {3,4,6,8,10,15,20,30,40,50,60,70,80,90,100,110,120,130}