Re: Avoiding imaginary numbers in DSolve
- To: mathgroup at smc.vnet.net
- Subject: [mg38003] Re: [mg37977] Avoiding imaginary numbers in DSolve
- From: "Y.A.Tesiram" <yas at pcomm.hfi.unimelb.edu.au>
- Date: Mon, 25 Nov 2002 01:56:57 -0500 (EST)
- Sender: owner-wri-mathgroup at wolfram.com
Hi, In[13]:= ?Re Re[z] gives the real part of the complex number z. So In[12]:= Re[(FullSimplify[#1, M > 0 && r > 0] & )[DSolve[(-Derivative[2][t][r])*r^2 +M*Derivative[1][t][r]^3 == 0, t[r], r]]] Yas On Sat, 23 Nov 2002, Dave Snead wrote: > I'm using DSolve to solve a differential equation, the result of which > should be real but instead I get combinations > > of quantities involving the imaginary I (which I assume reduces to a real > quantity). How do I get results that look > > real and avoid I? Thanks in advance. > > > > (FullSimplify[#1, M > 0 && r > 0] & )[ > > DSolve[(-Derivative[2][t][r])*r^2 + > > M*Derivative[1][t][r]^3 == 0, t[r], r]] > > > > {{t[r] -> Sqrt[r*(M - r*C[1])]/(Sqrt[2]*C[1]) + C[2] - > > (I*M*Log[2*((-I)*Sqrt[2]*Sqrt[r*C[1]] + > > Sqrt[2*M - 2*r*C[1]])])/(Sqrt[2]*C[1]^(3/2))}, > > {t[r] -> -(Sqrt[r*(M - r*C[1])]/(Sqrt[2]*C[1])) + C[2] + > > (I*M*Log[2*((-I)*Sqrt[2]*Sqrt[r*C[1]] + > > Sqrt[2*M - 2*r*C[1]])])/(Sqrt[2]*C[1]^(3/2))}} > > > > > >