Mathematica 9 is now available
Services & Resources / Wolfram Forums
-----
 /
MathGroup Archive
2002
*January
*February
*March
*April
*May
*June
*July
*August
*September
*October
*November
*December
*Archive Index
*Ask about this page
*Print this page
*Give us feedback
*Sign up for the Wolfram Insider

MathGroup Archive 2002

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: Sum of 1/Primes

  • To: mathgroup at smc.vnet.net
  • Subject: [mg36951] Re: [mg36910] Sum of 1/Primes
  • From: Roberto Brambilla <rlbrambilla at cesi.it>
  • Date: Thu, 3 Oct 2002 00:16:29 -0400 (EDT)
  • Sender: owner-wri-mathgroup at wolfram.com

At 03.31 02/10/02 -0400, you wrote:
>Dear Colleagues,
>
>I calculated:
>
>Sum[1/Prime[n], {n, 15000}] // N
>
>Result: 2.74716
>
>Now I wonder if this sum will converge or keep on growing, albeit very
>slowly.
>
>Best regards,
>
>Matthias Bode
>Sal. Oppenheim jr. & Cie. KGaA
>Koenigsberger Strasse 29
>D-60487 Frankfurt am Main
>GERMANY
>Tel.: +49(0)69 71 34 53 80
>Mobile: +49(0)172 6 74 95 77
>Fax: +49(0)69 71 34 95 380
>E-mail: matthias.bode at oppenheim.de
>Internet: http://www.oppenheim.de
>
>
>
Hi Matthias,

The serie is divergent!
I suggest you to look at this beautiful introduction to primes distribution

http://www.maths.ex.ac.uk/%7Emwatkins/zeta/vardi.html


Bye, rob
Roberto Brambilla
CESI
Via Rubattino 54
20134 Milano
tel +39.02.2125.5875
fax +39.02.2125.5492
rlbrambilla at cesi.it



  • Prev by Date: RE: Sum of 1/Primes
  • Next by Date: Re: Re: Linux Users?
  • Previous by thread: RE: Sum of 1/Primes
  • Next by thread: Re: Sum of 1/Primes