Re: Sum of 1/Primes
- To: mathgroup at smc.vnet.net
- Subject: [mg36955] Re: [mg36910] Sum of 1/Primes
- From: Murray Eisenberg <murraye at attbi.com>
- Date: Thu, 3 Oct 2002 00:16:39 -0400 (EDT)
- Organization: Mathematics & Statistics, Univ. of Mass./Amherst
- References: <200210020731.DAA20623@smc.vnet.net>
- Reply-to: murray at math.umass.edu
- Sender: owner-wri-mathgroup at wolfram.com
It is well known that the infinite series of reciprocals of the primes DIVERGES! See, for example: http://www.utm.edu/research/primes/infinity.shtml Matthias.Bode at oppenheim.de wrote: > Dear Colleagues, > > I calculated: > > Sum[1/Prime[n], {n, 15000}] // N > > Result: 2.74716 > > Now I wonder if this sum will converge or keep on growing, albeit very > slowly. > > Best regards, > > Matthias Bode > Sal. Oppenheim jr. & Cie. KGaA > Koenigsberger Strasse 29 > D-60487 Frankfurt am Main > GERMANY > Tel.: +49(0)69 71 34 53 80 > Mobile: +49(0)172 6 74 95 77 > Fax: +49(0)69 71 34 95 380 > E-mail: matthias.bode at oppenheim.de > Internet: http://www.oppenheim.de > > > > -- Murray Eisenberg murray at math.umass.edu Mathematics & Statistics Dept. Lederle Graduate Research Tower phone 413 549-1020 (H) University of Massachusetts 413 545-2859 (W) 710 North Pleasant Street Amherst, MA 01375
- References:
- Sum of 1/Primes
- From: Matthias.Bode@oppenheim.de
- Sum of 1/Primes