RE: Re: Re: approximation for partitial binomial sum
- To: mathgroup at smc.vnet.net
- Subject: [mg36415] RE: [mg36403] Re: [mg36381] Re: [mg36239] approximation for partitial binomial sum
- From: "DrBob" <drbob at bigfoot.com>
- Date: Fri, 6 Sep 2002 03:16:44 -0400 (EDT)
- Reply-to: <drbob at bigfoot.com>
- Sender: owner-wri-mathgroup at wolfram.com
Borrowing liberally from Daniel, I like the following: ClearAll[sumBin, sumBinOdd, sumBinEven, index] sumBinOdd = Sum[Binomial[2index + 1, k]*p^(2index + 1 - k)*(1 - p)^k, { k, 0, index - 1}]; sumBinEven = Sum[Binomial[2index, k]* p^(2index - k)*(1 - p)^k, {k, 0, index - 1}]; sumBin[n_, Odd] = sumBinOdd /. {index -> (n - 1)/2}; sumBin[n_, Even] = sumBinEven /. {index -> n/2}; sumBin[n_?EvenQ] = sumBin[n, Even]; sumBin[n_?OddQ] = sumBin[n, Odd]; It allows you to see the solution symbolically for both odd and even n, and also to calculate it when n is a known integer. We also have the opportunity, for instance, to assume that 3x is even and calculate sumBin[3x, Even] p^(3*x)*((1/p)^(3*x) - ((-4 + 4/p)^((3*x)/2)* Gamma[1/2 + (3*x)/2]*Hypergeometric2F1[1, -((3*x)/2), 1 + (3*x)/2, (-1 + p)/p])/(Sqrt[Pi]*Gamma[1 + (3*x)/2])) or assume 3x is odd and calculate sumBin[3*x, Odd] p^(3*x)*((1/p)^(3*x) - (2^(3*x)*(-1 + 1/p)^((1/2)*(-1 + 3*x))* Gamma[3/2 + (1/2)*(-1 + 3*x)]*Hypergeometric2F1[1, -1 + (1/2)*(1 - 3*x), 1 + (1/2)*(-1 + 3*x), (-1 + p)/p])/(Sqrt[Pi]* Gamma[2 + (1/2)*(-1 + 3*x)])) Bobby Treat -----Original Message----- From: Daniel Lichtblau [mailto:danl at wolfram.com] To: mathgroup at smc.vnet.net Subject: [mg36415] [mg36403] Re: [mg36381] Re: [mg36239] approximation for partitial binomial sum Constantine wrote: > > Hi. > I want to get some F and R such that: > > F[n,p] + R[n,p] = Sum[Binomial[n,k] p^(n-k) (1-p)^k, {k, 0, Floor[n/2] - 1}], > when F[n,p] is an approximation to the sum and the R is the remaining error. > > Thanks in advance for any hint. > Constantine. > > At 06:34 AM 8/28/2002 -0400, you wrote: > > >In a message dated 8/28/02 4:44:13 AM, celster at cs.technion.ac.il writes: > > > > > >>I'm looking for a way of finding the approximation for partitial binomial > >>sum. > >>I'll be pleasant for any hint.. > > [...] > Office: Taub 411 > Tel: +972 4 8294375 You can get a closed form in terms of special functions if you split into two cases depending on whether n is even or odd. In[39]:= n = 2*m; In[40]:= InputForm[Sum[Binomial[n,k]*p^(n-k)*(1-p)^k, {k,0,m-1}]] Out[40]//InputForm= p^(2*m)*((p^(-1))^(2*m) - ((-4 + 4/p)^m*Gamma[1/2 + m]* Hypergeometric2F1[1, -m, 1 + m, (-1 + p)/p])/(Sqrt[Pi]*Gamma[1 + m])) In[41]:= n = 2*m+1; In[42]:= InputForm[Sum[Binomial[n,k]*p^(n-k)*(1-p)^k, {k,0,m-1}]] Out[42]//InputForm= p^(1 + 2*m)*((p^(-1))^(1 + 2*m) - (2^(1 + 2*m)*(-1 + p^(-1))^m*Gamma[3/2 + m]* Hypergeometric2F1[1, -1 - m, 1 + m, (-1 + p)/p])/(Sqrt[Pi]*Gamma[2 + m])) Daniel Lichtblau Wolfram Research