a numerical integration
- To: mathgroup at smc.vnet.net
- Subject: [mg36795] a numerical integration
- From: bagarell at unipa.it (fabio bagarello)
- Date: Thu, 26 Sep 2002 04:56:47 -0400 (EDT)
- Sender: owner-wri-mathgroup at wolfram.com
Well, I have written the following notebook with Mathematica In[78]:= a=Sqrt[4*Pi/Sqrt[3]] In[79]:= fcom[k_,mu_]:=(( 1+Exp[-I*mu*2*Pi/a]+Exp[-I*mu*4*Pi/a])*(1-Exp[-I*k*(a-mu)])/(I*k)+ Exp[-I*mu*2* Pi/a]*((1-Exp[-I*(k+2*Pi/a)*(a-mu)])/(I*(k+2*Pi/a))+( 1-Exp[-I*(k-2*Pi/a)*(a-mu)])/(I*(k-2*Pi/a)))+ Exp[-I*mu*4* Pi/a]*((1-Exp[-I*(k+4*Pi/a)*(a-mu)])/(I*(k+4*Pi/a))+( 1-Exp[-I*(k+2*Pi/a)*(a-mu)])/(I*(k+2*Pi/a)))+( 1-Exp[-I*(k-2*Pi/a)*(a-mu)])/(I*(k-2*Pi/a))+( 1-Exp[-I*(k-4*Pi/a)*(a-mu)])/(I*(k-4*Pi/a)))/(3*a) In[80]:= f0[k_,mu_]:=((1+Exp[-I*mu*2*Pi/a]+Exp[-I*mu*4*Pi/a])*(a-mu)+ Exp[-I*mu*2* Pi/a]*((1-Exp[-I*2*Pi/a*(a-mu)])/(I*(2*Pi/a))+( 1-Exp[-I*(-2*Pi/a)*(a-mu)])/(I*(-2*Pi/a)))+ Exp[-I*mu*4* Pi/a]*((1-Exp[-I*(4*Pi/a)*(a-mu)])/(I*(4*Pi/a))+( 1-Exp[-I*(2*Pi/a)*(a-mu)])/(I*(2*Pi/a)))+( 1-Exp[-I*(-2*Pi/a)*(a-mu)])/(I*(-2*Pi/a))+( 1-Exp[-I*(-4*Pi/a)*(a-mu)])/(I*(-4*Pi/a)))/(3*a) In[81]:= fp1[k_,mu_]:=(( 1+Exp[-I*mu*2*Pi/a]+Exp[-I*mu*4*Pi/a])*(1-Exp[-I*2*Pi/a*(a-mu)])/( I*2*Pi/a)+ Exp[-I*mu*2*Pi/a]*((1-Exp[-I*(4*Pi/a)*(a-mu)])/(I*(4*Pi/a))+(a-mu))+ Exp[-I*mu*4* Pi/a]*((1-Exp[-I*(6*Pi/a)*(a-mu)])/(I*(6*Pi/a))+( 1-Exp[-I*(4*Pi/a)*(a-mu)])/(I*(4*Pi/a)))+( a-mu)+(1-Exp[-I*(-2*Pi/a)*(a-mu)])/(I*(-2*Pi/a)))/(3*a) In[82]:= fm1[k_,mu_]:=(( 1+Exp[-I*mu*2*Pi/a]+Exp[-I*mu*4*Pi/a])*( 1-Exp[I*2*Pi/a*(a-mu)])/(-I*2*Pi/a)+ Exp[-I*mu*2*Pi/a]*((a-mu)+(1-Exp[-I*(-4*Pi/a)*(a-mu)])/(I*(-4*Pi/a)))+ Exp[-I*mu*4*Pi/a]*((1-Exp[-I*(2*Pi/a)*(a-mu)])/(I*(2*Pi/a))+(a-mu))+( 1-Exp[-I*(-4*Pi/a)*(a-mu)])/(I*(-4*Pi/a))+( 1-Exp[-I*(-6*Pi/a)*(a-mu)])/(I*(-6*Pi/a)))/(3*a) In[83]:= fp2[k_,mu_]:=(( 1+Exp[-I*mu*2*Pi/a]+Exp[-I*mu*4*Pi/a])*(1-Exp[-I*4*Pi/a*(a-mu)])/( I*4*Pi/a)+ Exp[-I*mu*2* Pi/a]*((1-Exp[-I*(6*Pi/a)*(a-mu)])/(I*(6*Pi/a))+(1-Exp[-I*( 2*Pi/a)*(a-mu)])/(I*(2*Pi/a)))+ Exp[-I*mu*4* Pi/a]*((1-Exp[-I*(8*Pi/a)*(a-mu)])/(I*(8*Pi/a))+( 1-Exp[-I*(6*Pi/a)*(a-mu)])/(I*(6*Pi/a)))+( 1-Exp[-I*(2*Pi/a)*(a-mu)])/(I*(2*Pi/a))+(a-mu))/(3*a) In[84]:= fm2[k_,mu_]:=(( 1+Exp[-I*mu*2*Pi/a]+Exp[-I*mu*4*Pi/a])*( 1-Exp[I*4*Pi/a*(a-mu)])/(-I*4*Pi/a)+ Exp[-I*mu*2* Pi/a]*((1-Exp[-I*(-2*Pi/a)*(a-mu)])/(I*(-2*Pi/a))+( 1-Exp[-I*(-6*Pi/a)*(a-mu)])/(I*(-6*Pi/a)))+ Exp[-I*mu*4* Pi/a]*((a-mu)+(1-Exp[-I*(-2*Pi/a)*(a-mu)])/(I*(-2*Pi/a)))+( 1-Exp[-I*(-6*Pi/a)*(a-mu)])/(I*(-6*Pi/a))+( 1-Exp[-I*(-8*Pi/a)*(a-mu)])/(I*(-8*Pi/a)))/(3*a) In[85]:= Lp[0|N[0],mu_]:=f0[0,mu] In[86]:= Lp[2*Pi/a|N[2*Pi/a],mu_]:=fp1[2*Pi/a,mu] In[87]:= Lp[-2*Pi/a|-N[2*Pi/a],mu_]:=fm1[2*Pi/a,mu] In[88]:= Lp[4*Pi/a|N[4*Pi/a],mu_]:=fp2[4*Pi/a,mu] In[89]:= Lp[-4*Pi/a|-N[4*Pi/a],mu_]:=fm2[-4*Pi/a,mu] In[90]:= Lp[k_,mu_]:=fcom[k,mu] In[91]:= Ll[k_,mu_]:=0/;mu>=a In[92]:= Ll[k_,mu_]:=0/;mu<=-a In[93]:= Ll[k_,mu_]:=Lp[k,mu]/;0<=mu<a In[94]:= Ll[k_,mu_]:=Exp[I*k*mu]*Conjugate[Lp[k,mu]]/;-a<mu<0 In[95]:= Ft[k_,mu_]:=(Exp[-2*k^2/3-mu^2/2+k*mu/Sqrt[3]]*Abs[Ll[k,mu]]^2-1)/( 2*Pi*Sqrt[4*k^2/3+mu^2-2*k*mu/Sqrt[3]]) At this point I need to compute the (numerical) integration of both Ll and, more important, Ft in all the real plane ({k,-Infinity,Infinity},{mu,-Infinity,Infinity}).As a first attempt I am trying with the following statement: NIntegrate[ Abs[Ll[k,mu]],{k,-10,-4*Pi/a,-2*Pi/a,0,2*Pi/a,4*Pi/a,10},{mu,-10,-a,0,a,10}, Method->MonteCarlo,MaxPoints->100000000,Compiled->False] but this is not enough to ensure convergence of the integration. Notice that I have inserted some points in the integration path in order to avoid problems with numerical divergences which Mathematica detects in fcom[k,mu] (but these divergences do not really exist, analitically) Does somebody has a smart suggestion to perform this computation? Thank you everybody, Fabio