Services & Resources / Wolfram Forums
-----
 /
MathGroup Archive
2002
*January
*February
*March
*April
*May
*June
*July
*August
*September
*October
*November
*December
*Archive Index
*Ask about this page
*Print this page
*Give us feedback
*Sign up for the Wolfram Insider

MathGroup Archive 2002

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: Bug in Solve?

  • To: mathgroup at smc.vnet.net
  • Subject: [mg36855] Re: [mg36834] Bug in Solve?
  • From: Andrzej Kozlowski <andrzej at tuins.ac.jp>
  • Date: Sun, 29 Sep 2002 02:55:25 -0400 (EDT)
  • Sender: owner-wri-mathgroup at wolfram.com

Solve[youre equation, p1, VerifySolutions->True] will return a 
solution. So will
Solve[Rationalize[your equation],p1].

Andrzej Kozlowski
Toyama International University
JAPAN


On Saturday, September 28, 2002, at 05:34 PM, David wrote:

> Hi,
>
> inside a program I need to solve this linear equation in terms of p1.
> However something odds happens. Sometimes the solution is computed and
> sometimes the result is empty [I mean no output...]. Is this a bug of 
> the
> solve command or am I doing something wrong? The problem is robust to:
> changing name to the variables and other makeups..
>
> Thank you very much,
>
> David
>
> ps: Sorry for the stupid way in which I copied the command...
>
>
>
> Solve[(x^2*((-0.9*x^7*(p^2*(-1 - 5.8*x^6 - 14.010000000000002*x^12 -
>                               18.04*x^18 - 13.06*x^24 -
>                               5.040000000000001*x^30 - 0.81*x^36) +
>                         x*(7.777777777777779 - 9.074074074074076*x +
>                               30.333333333333336*x^6 -
>                               21.51851851851852*x^7 -
>                               16.333333333333336*x^8 +
>                               44.33333333333334*x^12 +
>                               3.188888888888883*x^13 -
>                               65.68333333333332*x^14 +
>                               28.777777777777786*x^18 +
>                               47.937037037037044*x^19 -
>                               100.10000000000002*x^20 + 7.*x^24 +
>                               45.6037037037037*x^25 -
>                               69.53333333333333*x^26 +
>                               13.299999999999999*x^31 -
>                               19.833333333333332*x^32 -
>                               1.0499999999999996*x^38) +
>                         p*(-6 + 8.296296296296296*x -
>                               28.799999999999997*x^6 +
>                               32.785185185185185*x^7 +
>                               9.333333333333336*x^8 -
>                               55.260000000000005*x^12 +
>                               49.04777777777776*x^13 +
>                               38.38333333333334*x^14 -
>                               52.980000000000004*x^18 +
>                               34.20518518518518*x^19 +
>                               60.20000000000001*x^20 -
>                               25.380000000000003*x^24 +
>                               11.736296296296294*x^25 +
>                               43.63333333333334*x^26 - 4.86*x^30 +
>                               2.8999999999999986*x^31 +
>                               13.533333333333333*x^32 + 0.81*x^37 +
>                               1.0499999999999996*x^38)))/(x + 1.9*x^7 +
>                       0.9*x^13)^2 - ((-1 + p - 7*x^6 + p*x^6 +
>                         6*x^7)*(1.2962962962962965 - 
> 3.111111111111112*x^6 +
>                         9.333333333333336*x^7 - 
> 10.111111111111114*x^12 +
>                         22.05*x^13 - 5.703703703703705*x^18 + 
> 17.15*x^19 +
>                         5.483333333333331*x^25 + 
> 1.0499999999999996*x^31 +
>                         p1*x^5*(7.000000000000002 - 
> 7.000000000000002*x +
>                               14.000000000000004*x^6 -
>                               14.000000000000004*x^7 +
>                               7.000000000000002*x^12 -
>                               6.999999999999998*x^13) -
>                         1.166666666666667*p*x^4*x1 -
>                         3.500000000000001*p*x^10*x1 -
>                         1.0500000000000003*p*x^11*x1 -
>                         3.500000000000001*p*x^16*x1 -
>                         3.150000000000001*p*x^17*x1 -
>                         1.166666666666667*p*x^22*x1 -
>                         3.150000000000001*p*x^23*x1 -
>                         1.0500000000000003*p*x^29*x1))/((1 + 
> 0.9*x^6)^2*(1 +
>                           x^6)^2)))/(p^2*(1 + x^6)^3) == 0, p1]
>
>
>
>
>
>
>



  • Prev by Date: Re: A Bessel integral
  • Next by Date: Re: Bug in Solve?
  • Previous by thread: Re: Bug in Solve?
  • Next by thread: Re: Bug in Solve?