Re: Re: PDE
- To: mathgroup at smc.vnet.net
- Subject: [mg42932] Re: [mg42917] Re: [mg42801] PDE
- From: "Teodor Stanescu" <teodoor at hotmail.com>
- Date: Mon, 4 Aug 2003 00:46:00 -0400 (EDT)
- References: <200308020812.EAA22060@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Hi all, Could anyone help me with the following problem? \!\(\(eques = {\[IndentingNewLine]\[PartialD]\_t Ef[t, x] + \[PartialD]\_x Ef[ t, x] == \(-el\)* Ef[t, x]*\((mun*n[t, x] + mup*p[t, x])\)/\((eps0* eps)\)\[IndentingNewLine] + el*\((m2[t, x] - m1[t, x] + p[t, x] - n[t, x])\)/\((eps0* eps)\), \ \[IndentingNewLine]\[PartialD]\_t m1[t, x] == g1n*n[t, x]*\((M0 - m1[t, x])\) - g2p*p[t, x]*m1[t, x], \ \[IndentingNewLine]\[PartialD]\_t m2[t, x] == g1p*p[t, x]*\((M0 - m2[t, x])\) - g2n*n[t, x]*m2[t, x], \ \[IndentingNewLine]\[PartialD]\_t n[t, x] == k0*Exp[\(-miu\)*x] + mun*n[t, x]*\[PartialD]\_x Ef[t, x] - g1n*n[t, x]*\((M0 - m1[t, x])\) - g2n*n[t, x]*m2[t, x], \ \[IndentingNewLine]\[PartialD]\_t p[t, x] == k0*Exp[\(-miu\)*x] - mup*p[t, x]*\[PartialD]\_x Ef[t, x] - g1p*p[t, x]*\((M0 - m2[t, x])\) - g2p*p[t, x]*m1[t, x]\[IndentingNewLine]};\)\) bcond = { Ef[0, x] == 800/0.02, m1[0, x] == 0, m1[t, 0] == 0, m1[t, l] == 0, m2[0, x] == 0, m2[t, 0] == 0, m2[t, l] == 0, n[0, x] == k0*Exp[-miu*x], p[0, x] == k0*Exp[-miu*x] }; Timing[S = Ef /. First[ NDSolve[{eques, bcond}, {Ef, m1, m2, n, p}, {t, 0, 1}, {x, 0, l}, PrecisionGoal -> 1]]] Plot3D[S[t, x], {t, 0, 1}, {x, 0, 1}, PlotRange -> All, PlotPoints -> 25]; All the other coefficients are constants: \!\(\(g1n = 10\^\(-10\);\)\) \!\(\(g1p = 10\^\(-8\);\)\) \!\(\(g2n = 10\^\(-9\);\)\) \!\(\(g2p = 10\^\(-7\);\)\) \!\(\(k0 = 0.783*10\^13*45*4*10\^\(-4\)*15/60;\)\) \!\(\(el = 1.6022*10\^\(-19\);\)\) \!\(\(eps0 = 8.8542*10\^\(-16\);\)\) eps = 6.3; \!\(\(mun = 2.8*10\^\(-3\);\)\) mup = 0.15; \!\(\(M0 = 10\^13;\)\) l = 0.0239; miu = 1.7165/l; After running the above code I got the following error: NDSolve::nderr: Error test failure at t == 0.0023669463792995483`; unable to \ continue. Any help will be appreciated. Thank you. Teo.
- References:
- Re: PDE
- From: sean kim <shawn_s_kim@yahoo.com>
- Re: PDE