Re: Re: goldbach prime partitions for arbitrary integer n => 4
- To: mathgroup at smc.vnet.net
- Subject: [mg43030] Re: [mg43007] Re: goldbach prime partitions for arbitrary integer n => 4
- From: Dr Bob <drbob at bigfoot.com>
- Date: Sat, 9 Aug 2003 02:57:32 -0400 (EDT)
- Organization: Space Corps
- References: <bgsn4c$nnq$1@smc.vnet.net> <200308080426.AAA05562@smc.vnet.net>
- Reply-to: drbob at bigfoot.com
- Sender: owner-wri-mathgroup at wolfram.com
Here are a couple of solutions using Sow and Reap: primePartition[n_Integer] := First@Last@ Module[{p, k}, Reap[ For[k = 1, k â?¤ PrimePi[n/2], k++, p = Prime@k; If[PrimeQ[n - p], Sow@{p, n - p}]] ] ] primePartition@200 or ClearAll@primePartition testAndSow[n_] := Module[{p = Prime@#}, If[PrimeQ[n - p], Sow@{p, n - p}]] & primePartition[n_Integer] := First@Last@Reap[testAndSow[n] /@ Range@PrimePi[n/2]] primePartition@200 But this is my favorite solution, I think: ClearAll@primePartition primePartition[n_Integer?Positive] := Transpose@{n - #, #} &@ Select[n - Prime@Range@PrimePi[n/2],PrimeQ] primePartition@200 Bobby On Fri, 8 Aug 2003 00:26:22 -0400 (EDT), Bob Hanlon <bobhanlon at aol.com> wrote: > primePartition[n_Integer] := > Select[ > Table[ > {Prime[p], n-Prime[p]}, {p, PrimePi[n/2]}], PrimeQ[#[[2]]]&]; > > primePartition[200] > > {{3, 197}, {7, 193}, {19, 181}, {37, 163}, {43, 157}, {61, 139}, {73, > 127}, {97, 103}} > > > Bob Hanlon > > In article <bgsn4c$nnq$1 at smc.vnet.net>, > gilmar.rodriguez at nwfwmd.state.fl.us > (=?ISO-8859-1?Q?Gilmar_Rodr=EDguez_Pierluissi?=) wrote: > > << If one wishes to compute: > eqn={p+q==200}; constraints={2<=p<=100, p<=q, p,q \[Element]Primes}; > wouldn't it be nice that if you evaluate: > Solve[eqn,constraints,{p,q}] > you would get: > {{97,103},{73,127},{61,139},{43,157},{37,163},{19,181},{7,193},{3,197}} ? > A module (or program) that could solve: > eqn={p+q==n}; constraints={2<=p<=n/2, p<=q, p,q \[Element]Primes}; > Solve[eqn,constraints,{p,q}] > for a specified n, (n=>4, n \[Element]Integer), would be even better! > >><BR><BR> > > -- majort at cox-internet.com Bobby R. Treat
- References:
- Re: goldbach prime partitions for arbitrary integer n => 4
- From: bobhanlon@aol.com (Bob Hanlon)
- Re: goldbach prime partitions for arbitrary integer n => 4