MathGroup Archive 2003

[Date Index] [Thread Index] [Author Index]

Search the Archive

problem with the cells in my last NDSolve error post ...

  • To: mathgroup at smc.vnet.net
  • Subject: [mg43392] problem with the cells in my last NDSolve error post ...
  • From: sean kim <shawn_s_kim at yahoo.com>
  • Date: Fri, 29 Aug 2003 07:15:52 -0400 (EDT)
  • Sender: owner-wri-mathgroup at wolfram.com

hello group

it appears that yahoo does something with the lines, and the I copied and pasted for the NDsolve
errors isn't properly formatted.  I haven't been able to locate the problem.  but I think its the
line breaks in yahoo email. im changing the width to 99 which is maximum and see if that fixes the
problem. 

so here's goes nothing. let me know if you would like to see my notebook. i could send it as an
attachment( which i think works better...)



\!\(\*
  RowBox[{
    RowBox[{
      RowBox[{"odes", " ", "=", 
        RowBox[{"{", 
          RowBox[{
            RowBox[{
              RowBox[{
                SuperscriptBox["b", "\[Prime]",
                  MultilineFunction->None], "[", "t", "]"}], 
              "==", \(v1 - d1\ b[t] - bi\ k1\ b[t] + k2\ c[t]\)}], ",", 
            RowBox[{
              RowBox[{
                SuperscriptBox["c", "\[Prime]",
                  MultilineFunction->None], "[", "t", "]"}], 
              "==", \(bi\ k1\ b[t] - k2\ c[t] - k3\ c[t]\)}], ",", 
            RowBox[{
              RowBox[{
                SuperscriptBox["d", "\[Prime]",
                  MultilineFunction->None], "[", "t", "]"}], 
              "==", \(k3\ c[t] - k4\ d[t]\ e[t] + k5\ f[t] + k6\ f[t] - 
                k7\ d[t]\ i[t] + k8\ j[t] - k12\ d[t]\ k[t] + k13\ l[t]\)}], 
            ",", 
            RowBox[{
              RowBox[{
                SuperscriptBox["f", "\[Prime]",
                  MultilineFunction->None], "[", "t", "]"}], 
              "==", \(k4\ d[t]\ e[t] - k5\ f[t] - k6\ f[t]\)}], ",", 
            RowBox[{
              RowBox[{
                SuperscriptBox["j", "\[Prime]",
                  MultilineFunction->None], "[", "t", "]"}], 
              "==", \(k7\ d[t]\ i[t] - k8\ j[t] - k9\ j[t]\)}], ",", 
            RowBox[{
              RowBox[{
                SuperscriptBox["p", "\[Prime]",
                  MultilineFunction->None], "[", "t", "]"}], 
              "==", \(v2 - d2\ p[t] - k19\ o[t]\ p[t] + k20\ q[t]\)}], ",", 
            RowBox[{
              RowBox[{
                SuperscriptBox["n", "\[Prime]",
                  MultilineFunction->None], "[", "t", "]"}], 
              "==", \(v7 - d7\ n[t] - k17\ m[t]\ n[t] + k18\ o[t] - 
                k23\ n[t]\ s[t] + k24\ t[t]\)}], ",", 
            RowBox[{
              RowBox[{
                SuperscriptBox["t", "\[Prime]",
                  MultilineFunction->None], "[", "t", "]"}], 
              "==", \(k23\ n[t]\ s[t] - k24\ t[t]\)}], ",", 
            RowBox[{
              RowBox[{
                SuperscriptBox["h", "\[Prime]",
                  MultilineFunction->None], "[", "t", "]"}], 
              "==", \(v6 - d6\ h[t] - k10\ h[t]\ i[t] + k11\ k[t] + 
                k22\ q[t]\)}], ",", 
            RowBox[{
              RowBox[{
                SuperscriptBox["k", "\[Prime]",
                  MultilineFunction->None], "[", "t", "]"}], 
              "==", \(k10\ h[t]\ i[t] - k11\ k[t] - k12\ d[t]\ k[t] + 
                k13\ l[t]\)}], ",", 
            RowBox[{
              RowBox[{
                SuperscriptBox["l", "\[Prime]",
                  MultilineFunction->None], "[", "t", "]"}], 
              "==", \(k12\ d[t]\ k[t] - k13\ l[t] - k14\ l[t]\)}], ",", 
            RowBox[{
              RowBox[{
                SuperscriptBox["u", "\[Prime]",
                  MultilineFunction->None], "[", "t", "]"}], 
              "==", \(v3 - d3\ u[t] - k25\ m[t]\ u[t] + k26\ v[t] + 
                k27\ v[t]\)}], ",", 
            RowBox[{
              RowBox[{
                SuperscriptBox["e", "\[Prime]",
                  MultilineFunction->None], "[", "t", "]"}], 
              "==", \(v4 - d4\ e[t] - k15\ e[t] - k4\ d[t]\ e[t] + k5\ f[t] - 
                k28\ e[t]\ i[t] + k16\ w[t] + k29\ x[t]\)}], ",", 
            RowBox[{
              RowBox[{
                SuperscriptBox["w", "\[Prime]",
                  MultilineFunction->None], "[", "t", "]"}], 
              "==", \(k15\ e[t] + k27\ v[t] - k16\ w[t]\)}], ",", 
            RowBox[{
              RowBox[{
                SuperscriptBox["g", "\[Prime]",
                  MultilineFunction->None], "[", "t", "]"}], 
              "==", \(k6\ f[t] - k15\ g[t] + k16\ m[t]\)}], ",", 
            RowBox[{
              RowBox[{
                SuperscriptBox["m", "\[Prime]",
                  MultilineFunction->None], "[", "t", "]"}], 
              "==", \(k15\ g[t] - k16\ m[t] - k17\ m[t]\ n[t] + k18\ o[t] - 
                k25\ m[t]\ u[t] + k26\ v[t]\)}], ",", 
            RowBox[{
              RowBox[{
                SuperscriptBox["o", "\[Prime]",
                  MultilineFunction->None], "[", "t", "]"}], 
              "==", \(k17\ m[t]\ n[t] - k18\ o[t] - k19\ o[t]\ p[t] + 
                k20\ q[t]\)}], ",", 
            RowBox[{
              RowBox[{
                SuperscriptBox["q", "\[Prime]",
                  MultilineFunction->None], "[", "t", "]"}], 
              "==", \(k19\ o[t]\ p[t] - k20\ q[t]\)}], ",", 
            RowBox[{
              RowBox[{
                SuperscriptBox["v", "\[Prime]",
                  MultilineFunction->None], "[", "t", "]"}], 
              "==", \(k25\ m[t]\ u[t] - k26\ v[t] - k27\ v[t]\)}], ",", 
            RowBox[{
              RowBox[{
                SuperscriptBox["x", "\[Prime]",
                  MultilineFunction->None], "[", "t", "]"}], 
              "==", \(k28\ e[t]\ i[t] - k29\ x[t] - k30\ x[t]\)}], ",", 
            RowBox[{
              RowBox[{
                SuperscriptBox["s", "\[Prime]",
                  MultilineFunction->None], "[", "t", "]"}], 
              "==", \(v8 - d8\ s[t] - k23\ n[t]\ s[t] + k24\ t[t]\)}], ",", 
            RowBox[{
              RowBox[{
                SuperscriptBox["i", "\[Prime]",
                  MultilineFunction->None], "[", "t", "]"}], 
              "==", \(v5 - d5\ i[t] - k7\ d[t]\ i[t] - k28\ e[t]\ i[t] - 
                k10\ h[t]\ i[t] + k8\ j[t] + k9\ j[t] + k11\ k[t] + 
                k14\ l[t] + k29\ x[t] + k30\ x[t]\)}], ",", 
            RowBox[{
              RowBox[{
                SuperscriptBox["r", "\[Prime]",
                  MultilineFunction->None], "[", "t", "]"}], 
              "==", \(k21\ q[t]\)}]}], "}"}]}], ";"}], "\[IndentingNewLine]", 
    "\[IndentingNewLine]", \(ics\  = \ {b[0] == v1/d1, p[0] == v2/d2, 
          u[0] == v3/d3, 
          w[0] == \((d5\ k15\ \((k29 + k30)\)\ v4)\)/\((k16\ \((d4\ d5\ k29 + 
                      d4\ d5\ k30 + k28\ k30\ v5)\))\), 
          t[0] == \(k23\ v7\ v8\)\/\(d7\ d8\ k24\), 
          k[0] == \(k10\ v5\ v6\)\/\(d5\ d6\ k11\), 
          x[0] == \(k28\ v4\ v5\)\/\(d4\ d5\ k29 + d4\ d5\ k30 + k28\ k30\ v5\
\), n[0] == v7\/d7, h[0] == v6\/d6, s[0] == v8\/d8, 
          e[0] == \(d5\ \((k29 + k30)\)\ v4\)\/\(d4\ d5\ k29 + d4\ d5\ k30 + \
k28\ k30\ v5\), i[0] == v5\/d5, c[0] == 0, d[0] == 0, f[0] == 0, j[0] == 0, 
          q[0] == 0, g[0] == 0, m[0] == 0, l[0] == 0, o[0] == 0, v[0] == 0, 
          r[0] == 0};\), "\[IndentingNewLine]", 
    "\[IndentingNewLine]", \(vars\  = \ {b[t], c[t], d[t], f[t], j[t], p[t], 
          n[t], t[t], h[t], k[t], l[t], u[t], e[t], w[t], g[t], m[t], o[t], 
          q[t], v[t], x[t], s[t], i[t], r[t]};\), "\[IndentingNewLine]", 
    "\[IndentingNewLine]", \(For[\ ii\  = \ 1, \ 
      ii < 5, \ \[IndentingNewLine]np = \ {k1 -> \ \((Random[
                  Real, \ {1, \ 10}])\)*\ 
              10^\ \((Random[Integer, \ {4, \ 8}])\), 
          k2\  -> \((Random[Real, \ {1, \ 10}])\)*\ 
              10^\ \((Random[
                    Integer, \ {\(-7\), \ \(-4\)}])\), \ \
\[IndentingNewLine]k3 -> \ \((Random[Real, \ {1, \ 10}])\)\ *\ 
              10^\ \((Random[Integer, \ {1, \ 3}])\), \ 
          k4 -> \ \((Random[Real, \ {1, \ 10}])\)\ *\ 
              10^\ \((Random[
                    Integer, \ {5, \ 
                      8}])\), \ \[IndentingNewLine]k5 -> \ \((Random[
                  Real, \ {1, \ 10}])\)*10^\ \((Random[
                    Integer, \ {\(-4\), \ \(-1\)}])\), \ 
          k6 -> \((Random[Real, \ {1, \ 10}])\)\ *\ 
              10^\ \((Random[
                    Integer, \ {1, \ 
                      2}])\)\ , \[IndentingNewLine]k7 -> \ \((Random[
                  Real, \ {1, \ 10}])\)\ *\ 
              10^\ \((Random[Integer, \ {1, \ 3}])\)\ , \ 
          k8 -> \ \ \((Random[Real, \ {1, \ 10}])\)\ *\ 
              10^\((Random[
                    Integer, \ {\(-7\), \ \(-4\)}])\), \[IndentingNewLine]k9 \
-> \ \((Random[Real, \ {19, \ 10}])\)*\ 
              10^\((Random[Integer, \ {\(-6\), \ \(-3\)}])\), 
          k10 -> \ \((Random[Real, \ {1, \ 10}])\)\ *\ 
              10^\ \((Random[
                    Integer, \ {1, \ 
                      3}])\), \ \ \[IndentingNewLine]k11 -> \ \((Random[
                  Real, \ {1, \ 10}])\)\ *\ 
              10^\((Random[Integer, \ {\(-7\), \ \(-4\)}])\), 
          k12 -> \((Random[Real, \ {1, \ 10}])\)\ *\ 
              10^\ \((Random[
                    Integer, \ {1, \ 
                      3}])\), \ \[IndentingNewLine]k13 -> \((Random[
                  Real, \ {1, \ 10}])\)\ *\ 
              10^\((Random[Integer, \ {\(-7\), \ \(-4\)}])\), 
          k14 -> \ \ \((Random[Real, \ {1, \ 10}])\)*\ 
              10^\((Random[
                    Integer, \ {\(-6\), \ \(-3\)}])\), \[IndentingNewLine]k15 \
-> \ \((Random[Real, \ {1, \ 10}])\)*\ 
              10^\ \((Random[Integer, \ {\(-4\), \ \(-1\)}])\), \ 
          k16 -> \((Random[Real, \ {1, \ 10}])\)*\ 
              10^\ \((Random[Integer, \ {\(-4\), \ \(-1\)}])\), \ 
          k17 -> \ \ \((Random[Real, \ {1, \ 10}])\)\ *\ 
              10^\ \((Random[Integer, \ {2, \ 5}])\)\ , \ 
          k18 -> \((Random[Real, \ {1, \ 10}])\)\ *\ 
              10^\ \((Random[
                    Integer, \ {\(-7\), \ \(-4\)}])\)\ , \
\[IndentingNewLine]k19 -> \((Random[Real, \ {1, \ 10}])\)\ *\ 
              10^\ \((Random[Integer, \ {3, \ 6}])\)\ , \ 
          k20 -> \ \((Random[Real, \ {1, \ 10}])\)\ *\ 
              10^\((Random[
                    Integer, \ {\(-8\), \ \(-5\)}])\)\ , \ \
\[IndentingNewLine]k21 -> \((Random[Real, \ {1, \ 10}])\)\ *\ 
              10^\ \((Random[Integer, \ {1, \ 3}])\), 
          k22\  -> \((Random[Real, \ {1, \ 10}])\)\ *\ 
              10^\((Random[
                    Integer, \ {1, \ 
                      3}])\), \ \[IndentingNewLine]k23 -> \ \((Random[
                  Real, \ {1, \ 10}])\)\ *\ 
              10^\ \((Random[Integer, \ {3, \ 6}])\)\ , \ 
          k24 -> \ \((Random[Real, \ {1, \ 10}])\)\ *\ 
              10^\ \((Random[Integer, \ {\(-7\), \ \(-4\)}])\)\ , \ 
          k25 -> \ \((Random[Real, \ {1, \ 10}])\)\ *\ 
              10^\ \((Random[Integer, \ {3, \ 6}])\), \ 
          k26 -> \ \((Random[Real, \ {1, \ 10}])\)\ *\ 
              10^\ \((Random[
                    Integer, \ {\(-7\), \ \(-5\)}])\)\ , \ \
\[IndentingNewLine]k27 -> \ \((Random[Real, \ {1, \ 10}])\)\ *\ 
              10^\ \((Random[Integer, \ {1, \ 4}])\)\ , \ 
          k28 -> \ \ \((Random[Real, \ {1, \ 10}])\)\ *\ 
              10^\ \((Random[Integer, \ {1, \ 3}])\), \ 
          k29 -> \ \((Random[Real, \ {1, \ 10}])\)\ *\ 
              10^\ \((Random[Integer, \ {\(-7\), \ \(-4\)}])\), \ 
          k30 -> \ \((Random[Real, \ {1, \ 10}])\)*\ 
              10^\ \((Random[Integer, \ {\(-6\), \ \(-3\)}])\), 
          v1 -> \((Random[Real, \ {1, \ 10}])\)*\ 
              10^\ \((Random[Integer, \ {\(-12\), \ \(-9\)}])\), 
          d1 -> \ \((Random[Real, \ {1, \ 10}])\)*\ 
              10^\ \((Random[
                    Integer, \ {\(-6\), \ \(-3\)}])\), \[IndentingNewLine]v2 \
-> \((Random[Real, \ {1, \ 10}])\)*\ 
              10^\ \((Random[Integer, \ {\(-10\), \ \(-8\)}])\), 
          d2 -> \((Random[Real, \ {1, \ 10}])\)*\ 
              10^\ \((Random[
                    Integer, \ {\(-6\), \ \(-3\)}])\), \[IndentingNewLine]v3 \
-> \((Random[Real, \ {1, \ 10}])\)*\ 
              10^\((Random[Integer, \ {\(-11\), \ \(-8\)}])\), \ 
          d3 -> \((Random[Real, \ {1, \ 10}])\)*\ 
              10^\ \((Random[
                    Integer, \ {\(-6\), \ \(-3\)}])\), \[IndentingNewLine]v4 \
-> \((Random[Real, \ {1, \ 10}])\)*\ 
              10^\ \((Random[Integer, \ {\(-10\), \ \(-8\)}])\), 
          d4 -> \((Random[Real, \ {1, \ 10}])\)*\ 
              10^\ \((Random[Integer, \ {\(-6\), \ \(-3\)}])\), 
          v5 -> \((Random[Real, \ {1, \ 10}])\)*\ 
              10^\((Random[Integer, \ {\(-10\), \ \(-8\)}])\), 
          d5 -> \((Random[Real, \ {1, \ 10}])\)*\ 
              10^\ \((Random[
                    Integer, \ {\(-6\), \ \(-3\)}])\), \[IndentingNewLine]v6 \
-> \((Random[Real, \ {1, \ 10}])\)*\ 
              10^\((Random[Integer, \ {\(-10\), \ \(-8\)}])\), 
          d6 -> \ \((Random[Real, \ {1, \ 10}])\)*\ 
              10^\ \((Random[
                    Integer, \ {\(-6\), \ \(-3\)}])\), \[IndentingNewLine]v7 \
-> \ \((Random[Real, \ {1, \ 10}])\)*\ 
              10^\((Random[Integer, \ {\(-10\), \ \(-8\)}])\), 
          d7 -> \ \((Random[Real, \ {1, \ 10}])\)*\ 
              10^\ \((Random[
                    Integer, \ {\(-6\), \ \(-3\)}])\), \[IndentingNewLine]v8 \
-> \ \((Random[Real, \ {1, \ 10}])\)*\ 
              10^\((Random[Integer, \ {\(-10\), \ \(-8\)}])\), \ 
          d8 -> \ \((Random[Real, \ {1, \ 10}])\)*\ 
              10^\ \((Random[
                    Integer, \ {\(-6\), \ \(-3\)}])\), \[IndentingNewLine]bi \
-> \ \((Random[Real, \ {1, \ 10}])\)\ *\ 
              10^\ \((Random[
                    Integer, \ {\(-10\), \(-5\)}])\)}; \[IndentingNewLine]\
\[IndentingNewLine]nics\  = \ ics /. \ np; \[IndentingNewLine]nodes = \ 
        odes /. \ np; \[IndentingNewLine]Join[nodes, \ 
        nics]; \[IndentingNewLine]Print["\< iteration = \>", ii\ , \ np, \ 
        nics\ ]; \[IndentingNewLine]\[IndentingNewLine]soln\  = \ 
        NDSolve[\ Join[nodes, \ nics], \ vars, \ {t, \ 0, \ 100000}, 
          MaxSteps -> 1000000]; \[IndentingNewLine]\[IndentingNewLine]pb = \ 
        Plot[Evaluate[b[t] /. \ soln], \ {t, \ 0, \ 100000}, \ 
          PlotRange -> Automatic, \ PlotLabel -> b, \ 
          DisplayFunction -> Identity]; \[IndentingNewLine]pc\  = \ \ Plot[
          Evaluate[c[t] /. \ soln], \ {t, \ 0, \ 100000}, \ 
          PlotRange -> Automatic, \ PlotLabel -> c, 
          DisplayFunction -> Identity]; \[IndentingNewLine]pd\  = \ 
        Plot[Evaluate[c[t] /. \ soln], \ {t, \ 0, \ 100000}, \ 
          PlotRange -> Automatic, \ PlotLabel -> d, 
          DisplayFunction -> Identity]; \[IndentingNewLine]pf\  = \ 
        Plot[Evaluate[f[t] /. \ soln], \ {t, \ 0, \ 100000}, \ 
          PlotRange -> Automatic, \ PlotLabel -> f, 
          DisplayFunction -> Identity]; \[IndentingNewLine]pj = \ 
        Plot[Evaluate[j[t] /. \ soln], \ {t, \ 0, \ 100000}, \ 
          PlotRange -> Automatic, \ PlotLabel -> j, 
          DisplayFunction -> Identity]; \[IndentingNewLine]pp\  = \ 
        Plot[Evaluate[p[t] /. \ soln], \ {t, \ 0, \ 100000}, \ 
          PlotRange -> Automatic, \ PlotLabel -> p, 
          DisplayFunction -> Identity]; \[IndentingNewLine]pn\  = \ 
        Plot[Evaluate[n[t] /. \ soln], \ {t, \ 0, \ 100000}, \ 
          PlotRange -> Automatic, \ PlotLabel -> n, 
          DisplayFunction -> Identity]; \[IndentingNewLine]pt\  = \ 
        Plot[Evaluate[t[t] /. \ soln], \ {t, \ 0, \ 100000}, \ 
          PlotRange -> Automatic, \ PlotLabel -> t, 
          DisplayFunction -> Identity]; \[IndentingNewLine]ph\  = \ 
        Plot[Evaluate[h[t] /. \ soln], \ {t, \ 0, \ 100000}, \ 
          PlotRange -> Automatic, \ PlotLabel -> h, 
          DisplayFunction -> Identity]; \[IndentingNewLine]pk\  = \ 
        Plot[Evaluate[k[t] /. \ soln], \ {t, \ 0, \ 100000}, \ 
          PlotRange -> Automatic, \ PlotLabel -> k, 
          DisplayFunction -> Identity]; \[IndentingNewLine]pl = \ 
        Plot[Evaluate[l[t] /. \ soln], \ {t, \ 0, \ 100000}, \ 
          PlotRange -> Automatic, \ PlotLabel -> l, 
          DisplayFunction -> Identity]; \[IndentingNewLine]pu\  = \ 
        Plot[Evaluate[u[t] /. \ soln], \ {t, \ 0, \ 100000}, \ 
          PlotRange -> Automatic, \ PlotLabel -> u, 
          DisplayFunction -> Identity]; \[IndentingNewLine]pe = \ 
        Plot[Evaluate[e[t] /. \ soln], \ {t, \ 0, \ 100000}, \ 
          PlotRange -> Automatic, \ PlotLabel -> e, 
          DisplayFunction -> Identity]; \[IndentingNewLine]pw\  = \ 
        Plot[Evaluate[w[t] /. \ soln], \ {t, \ 0, \ 100000}, \ 
          PlotRange -> Automatic, \ PlotLabel -> w, 
          DisplayFunction -> Identity]; \[IndentingNewLine]pg\  = \ 
        Plot[Evaluate[g[t] /. \ soln], \ {t, \ 0, \ 100000}, \ 
          PlotRange -> Automatic, \ PlotLabel -> g, 
          DisplayFunction -> Identity]; \[IndentingNewLine]pm\  = \ 
        Plot[Evaluate[m[t] /. \ soln], \ {t, \ 0, \ 100000}, \ 
          PlotRange -> Automatic, \ PlotLabel -> m, 
          DisplayFunction -> Identity]; \[IndentingNewLine]po\  = \ 
        Plot[Evaluate[o[t] /. \ soln], \ {t, \ 0, \ 100000}, \ 
          PlotRange -> Automatic, \ PlotLabel -> o, 
          DisplayFunction -> Identity]; \[IndentingNewLine]pq\  = \ 
        Plot[Evaluate[q[t] /. \ soln], {t, \ 0, \ 100000}, \ 
          PlotRange -> Automatic, \ PlotLabel -> q, 
          DisplayFunction -> Identity]; \[IndentingNewLine]pv\  = \ 
        Plot[Evaluate[v[t] /. \ soln], \ {t, \ 0, \ 100000}, \ 
          PlotRange -> Automatic, \ PlotLabel -> v, 
          DisplayFunction -> Identity]; \[IndentingNewLine]px\  = \ 
        Plot[Evaluate[x[t] /. \ soln], \ {t, \ 0, \ 100000}, \ 
          PlotRange -> Automatic, \ PlotLabel -> x, 
          DisplayFunction -> Identity]; \[IndentingNewLine]ps\  = \ 
        Plot[Evaluate[s[t] /. \ soln], \ {t, \ 0, \ 100000}, \ 
          PlotRange -> Automatic, \ PlotLabel -> s, 
          DisplayFunction -> Identity]; \[IndentingNewLine]pi\  = \ 
        Plot[Evaluate[i[t] /. \ soln], \ {t, \ 0, \ 100000}, \ 
          PlotRange -> Automatic, \ PlotLabel -> i, 
          DisplayFunction -> Identity]; \[IndentingNewLine]pr\  = \ 
        Plot[Evaluate[r[t] /. \ soln], \ {t, \ 0, \ 100000}, \ 
          PlotRange -> Automatic, \ PlotLabel -> r, \ 
          DisplayFunction -> 
            Identity]; \[IndentingNewLine]\[IndentingNewLine]Show[
        GraphicsArray[{{pb, pc, \ pd, pf}, {\ pj, pp, pn, pt}, \ {ph, pk, pl, 
              pu}, {pe\ , pw\ , \ pg, pm}, {po\ , pq\ , pv\ , \ px}\ , \ {ps, 
              pi, \ pr\ }}, \ 
          ImageSize -> \ 
            750]]; \[IndentingNewLine]\[IndentingNewLine]Share[]; \
\[IndentingNewLine]\(ii++\)]\)}]\)


=====
when riding a dead horse,  some dismount.

while others... 

write memoirs on the subject of riding a dead horse.

__________________________________
Do you Yahoo!?
The New Yahoo! Search - Faster. Easier. Bingo.
http://search.yahoo.com


  • Prev by Date: Re: Two Argument ArcTan Function
  • Next by Date: randomly chosen parameters fails NDSolvewith a large ode system
  • Previous by thread: Re: Two Argument ArcTan Function
  • Next by thread: randomly chosen parameters fails NDSolvewith a large ode system