To verify Cauchy-Riemann relations in complex variable graphically

*To*: mathgroup at smc.vnet.net*Subject*: [mg39176] To verify Cauchy-Riemann relations in complex variable graphically*From*: "Narasimham G.L." <google.news.invalid at web2news.net>*Date*: Sun, 2 Feb 2003 01:13:31 -0500 (EST)*Reply-to*: "Narasimham G.L." <mathman-3ospp+am18 at hotmail.com>*Sender*: owner-wri-mathgroup at wolfram.com

Is it possible to have a semi transparent view of surfaces so that one may verify slopes by ParametricPlot3D for Cauchy-Riemann relations? The following is program for 3 functions Z^2, Z^3, Sin[Z].It was expected to check slopes at the line of intersection of Re and Im parts. R1=x^2-y^2 ; I1= 2 x y ; z2r=Plot3D[R1 , {x,-Pi,Pi},{y,-Pi,Pi} ]; z2i=Plot3D[I1 , {x,-Pi,Pi},{y,-Pi,Pi} ]; Show[z2r,z2i] ; 'Top view >> Re,Im Intxn'; Plot[{x ArcTan[-Sqrt[2]+1],x ArcTan[Sqrt[2]+1]}, {x,-Pi,Pi} ]; R3=x^3 - 3 x y^2 ; I3= 3 x^2 y - y ^3 ; z3r=Plot3D[R3 , {x,-Pi,Pi},{y,-Pi,Pi} ]; z3i=Plot3D[I3 , {x,-Pi,Pi},{y,-Pi,Pi} ]; Show[z3r,z3i] ; 'Top view >> Re,Im Intxn'; Plot[{x,x (-Sqrt[3]+2) , x (-Sqrt[3]-2) }, {x,-Pi,Pi} ]; R2=Cosh[y] Sin[x] ; I2=Sinh[y] Cos[x] ; scr=Plot3D[R2,{x,-Pi/2,Pi/2},{y,-Pi/2,Pi/2}]; sci=Plot3D[I2,{x,-Pi/2,Pi/2},{y,-Pi/2,Pi/2}]; Show[scr,sci]; 'Top view >> Re,Im Intxn'; Plot[{ArcTanh[Tan[x]]},{x,-Pi/2,Pi/2 }]; -- Posted via http://web2news.com To contact in private, remove