RE: perturbing constant in Para plots
- To: mathgroup at smc.vnet.net
- Subject: [mg38949] RE: [mg38937] perturbing constant in Para plots
- From: "Wolf, Hartmut" <Hartmut.Wolf at t-systems.com>
- Date: Wed, 22 Jan 2003 06:10:25 -0500 (EST)
- Sender: owner-wri-mathgroup at wolfram.com
>-----Original Message----- >From: Narasimham G.L. [mailto:google.news.invalid at web2news.net] To: mathgroup at smc.vnet.net >Sent: Tuesday, January 21, 2003 1:38 PM >To: mathgroup at smc.vnet.net >Subject: [mg38949] [mg38937] perturbing constant in Para plots > > > > >How to perturb the constant f in parametric plots? > >f= 1 ;' for single f value' >xy= { 2 f Sin[t]^2 ,Sinh[f t]+f Log[t] }; >ParametricPlot[ xy , {t,0,2}]; > >An attemt to Map did not work. >' f={ .5,1,1.5};' >'trj = Map [ xy &, f ];' >-- >Posted via http://web2news.com > > Preferably, I don't press everthing into one line: In[1]:= f = 1; Now, as f has a certain value, we must block it off, when defining xy: In[2]:= Block[{f}, xy = {2 f Sin[t]^2, Sinh[f t] + f Log[t]}] Out[2]= {2 Sin[t]^2, Log[t] + Sinh[t]} f seemingly disappeared, but In[3]:= ?xy Global`xy xy = {2 f Sin[t]^2, f Log[t] + Sinh[f t]} Rest is easy: In[4]:= ParametricPlot[ Evaluate[Block[{f = #}, xy] & /@ {.5, 1, 1.5}], {t, 0, 3}, PlotStyle -> {Hue[0], Hue[.3], Hue[.6]}] -- Hartmut Wolf