Re: Re: Solutions for functions containing jump discontinuities
- To: mathgroup at smc.vnet.net
- Subject: [mg39007] Re: [mg38982] Re: Solutions for functions containing jump discontinuities
- From: Dr Bob <drbob at bigfoot.com>
- Date: Fri, 24 Jan 2003 05:06:09 -0500 (EST)
- References: <b0lvo5$5b2$1@smc.vnet.net> <200301231305.IAA11755@smc.vnet.net> <oprjg2g4k4amtwdy@smtp.cox-internet.com>
- Sender: owner-wri-mathgroup at wolfram.com
Here's a useful plot: f[x_] := 5(x - 1500 Ceiling[x/1760]) plot1 = Block[{$DisplayFunction = Identity}, Plot[f@x, {x, -2000, 15000}]]; Show[plot1, Graphics@{ AbsolutePointSize@5, Point[{#, f@#}] & /@ Range[0, 9000, 1500]} ]; Bobby On Thu, 23 Jan 2003 15:40:06 -0600, Dr Bob <drbob at bigfoot.com> wrote: > You missed two roots (0 and 1500). Here's the case Mod[x, 1760] > 0: > > f[x_] := 5(x - 1500 Ceiling[x/1760]) > xRule = x -> 1760 k + y; > Simplify[f@x /. xRule, {0 < y < 1760, k â?? Integers}] > % /. Ceiling[a_] -> 1 > yRule = First@Solve[% == 0, y] > Flatten[k /. Solve[y == # /. yRule, k] & /@ {1, 1759}] > kValues = Range[Ceiling@Min@%, Floor@Max@%] > yValues = y /. (yRule /. List /@ Thread[k -> kValues]) > 1760kValues + yValues > f /@ % > > and here's the case Mod[x, 1760] == 0: > > xRule = x -> 1760 k + y; > Simplify[5(x - 1500 Ceiling[x/1760]) //. {xRule, y -> 0}, {k â?? Integers}] > yRule = First@Solve[% == 0, k] > 1760k /. % > f@% > > Bobby > > On Thu, 23 Jan 2003 08:05:15 -0500 (EST), Orestis Vantzos > <atelesforos at hotmail.com> wrote: > >> Your function simplifies to: >> f[x_]:=5(x - 1500 Ceiling[x/1760]) >> >> Now assume that [First Case] x==1760 k + y , 0<y<=1760 and k Integer >> Then Ceiling[x/1760]== Ceiling[k + y/1760]== k+1 >> so that f[x]==5 (-1500 + 260 k + y) >> >> If f[x]==0 then 5 (-1500 + 260 k + y)==0 and we solve for y: >> y== 1500-260 k >> >> 0<y<=1760 => >> 0< 1500-260k <=1760 >> -1500<-260 k <= 260 >> 5.77 > k >= 1 >> >> So k ranges from 1 to 5 and since x==1500(k+1) the roots are: >> Table[1500(k + 1),{k,1,5}] >> {3000, 4500, 6000, 7500, 9000} >> >> Orestis Vantzos >> >> newspostings at burkert.de (Burkert, Philipp) wrote in message >> news:<b0lvo5$5b2$1 at smc.vnet.net>... >>> Hi folks, >>> >>> we are searching all solutions where the function f results null. >>> >>> f[x_] := -7500 * Ceiling[(0.5 * x) / 880] + (5 * x) >>> Solve[{f[x] == 0}, x] >>> >>> As f contains jump discontinuities, we recieved the following error: >>> >>> InverseFunction::"ifun": "Inverse functions are being used. Values may >>> be \ >>> lost for multivalued inverses." >>> >>> Solve::"tdep": "The equations appear to involve the variables to be >>> solved \ >>> for in an essentially non-algebraic way." >>> >>> We would be pleased if anybody could help us. >>> >>> Regards, >>> Philipp Burkert >>> Carsten Siegmund >> >> > > > -- majort at cox-internet.com Bobby R. Treat
- References:
- Re: Solutions for functions containing jump discontinuities
- From: atelesforos@hotmail.com (Orestis Vantzos)
- Re: Solutions for functions containing jump discontinuities