Re: TrigExpand Bug?
- To: mathgroup at smc.vnet.net
- Subject: [mg39084] Re: TrigExpand Bug?
- From: "News Admin" <news at news.demon.net>
- Date: Wed, 29 Jan 2003 03:35:25 -0500 (EST)
- References: <b15o8t$erh$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
David, I don't know what the answer is but I notice the following: expr = (1 + Cos[t] + Cos[t]^2 + Sin[t]^2)/ (2 + Cos[t] + Cos[t]^2 + Sin[t]^2); TrigExpand[expr] (2 + Cos[t])/(2 + Cos[t] + Cos[t]^2 + Sin[t]^2) TrigExpand //@ expr (2 + Cos[t])/(3 + Cos[t]) -- Allan --------------------- Allan Hayes Mathematica Training and Consulting Leicester UK hay at haystack.demon.co.uk Voice: +44 (0)116 271 4198 Fax: +44 (0)870 164 0565 "David Park" <djmp at earthlink.net> wrote in message news:b15o8t$erh$1 at smc.vnet.net... > Is there a reason for this strange behavior of TrigExpand? > > All of these expressions simplify both the numerator and denominator. > (Cos[t]^2 + Sin[t]^2 is replaced by 1.) > > expr = (1 + Cos[t]^2 + Sin[t]^2)/(2 + Cos[t]^2 + Sin[t]^2); > TrigExpand[expr] > 2/3 > > expr = (1 + f[t] + Cos[t]^2 + Sin[t]^2)/(2 + f[t] + Cos[t]^2 + > Sin[t]^2); > TrigExpand[expr] > (2 + f[t])/(3 + f[t]) > > expr = (1 + Cos[t] + Cos[t]^2 + Sin[t]^2)/(2 + f[t] + Cos[t]^2 + > Sin[t]^2); > TrigExpand[expr] > (2 + Cos[t])/(3 + f[t]) > > But the following leaves the denominator untouched. > > expr = (1 + Cos[t] + Cos[t]^2 + Sin[t]^2)/(2 + Cos[t] + Cos[t]^2 + > Sin[t]^2); > TrigExpand[expr] > (2 + Cos[t])/(2 + Cos[t] + Cos[t]^2 + Sin[t]^2) > > On the other hand, Simplify, which uses the trig identities works. > > expr = (1 + Cos[t] + Cos[t]^2 + Sin[t]^2)/(2 + Cos[t] + Cos[t]^2 + > Sin[t]^2); > Simplify[expr] > (2 + Cos[t])/(3 + Cos[t]) > > David Park > djmp at earthlink.net > http://home.earthlink.net/~djmp/ > >