Re: More integration/ fullsimplify bugs in Mathematica 4.1
- To: mathgroup at smc.vnet.net
- Subject: [mg41722] Re: More integration/ fullsimplify bugs in Mathematica 4.1
- From: "Dr. Wolfgang Hintze" <weh at snafu.de>
- Date: Tue, 3 Jun 2003 07:13:04 -0400 (EDT)
- References: <bb4vt3$49a$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Mathematica 4.0 on Windows98: No bugs found in this example. Interesting: Simplify gives simpler results than FullSimplify. In[53]:= ClearAll["Global`*"] In[54]:= f[x_] := Integrate[1/(a*x^2 + b*x + c/4)^n, x] ### Using (simple) Simplify In[55]:= Simplify[f[t]] Out[55]= 1/(a*(-1 + n))*(2^(-1 - n)*(-b + Sqrt[b^2 - a*c] - 2*a*t)* ((b + Sqrt[b^2 - a*c] + 2*a*t)/Sqrt[b^2 - a*c])^n* Hypergeometric2F1[1 - n, n, 2 - n, (-b + Sqrt[b^2 - a*c] - 2*a*t)/(2*Sqrt[b^2 - a*c])])/ (c/4 + t*(b + a*t))^n In[56]:= Simplify[D[%, t]] Out[56]= (c/4 + t*(b + a*t))^(-n) In[57]:= Simplify[D[f[t], t]] Out[57]= (c/4 + t*(b + a*t))^(-n) ### Now, using FullSimplify In[62]:= FullSimplify[f[t]] Out[62]= 1/a*(2^(-1 - n)*(b - Sqrt[b^2 - a*c] + 2*a*t)* (1 + (b + 2*a*t)/Sqrt[b^2 - a*c])^n*Gamma[1 - n]* Hypergeometric2F1Regularized[1 - n, n, 2 - n, 1/2 - (b + 2*a*t)/(2*Sqrt[b^2 - a*c])])/ (c/4 + t*(b + a*t))^n In[63]:= FullSimplify[D[%, t]] Out[63]= ((-1 + n)*Gamma[1 - n]* (-1 + (1/2 + (b + 2*a*t)/(2*Sqrt[b^2 - a*c]))^n* (-1 + Gamma[2 - n])*Hypergeometric2F1Regularized[ 1 - n, n, 2 - n, 1/2 - (b + 2*a*t)/ (2*Sqrt[b^2 - a*c])]))/(c/4 + t*(b + a*t))^n ### but still In[65]:= FullSimplify[D[f[t], t]] Out[65]= (c/4 + t*(b + a*t))^(-n) Wolfgang Richard Fateman wrote: > Integrate[1/(a*x^2 + b*x + c/4)^n, x] > FullSimplify[%] > D[%,x] > InputForm[FullSimplify[%]] ==> > > (4^n*(-1 + n)*Gamma[1 - n]* > (-1 + (1/2 + (b + 2*a*x)/(2*Sqrt[b^2 - a*c]))^n* > (-1 + Gamma[2 - n])*Hypergeometric2F1Regularized[ > 1 - n, n, 2 - n, 1/2 - (b + 2*a*x)/ > (2*Sqrt[b^2 - a*c])]))/(c + 4*True*(b + a*True))^n > > notice the denominator has some variable "True" in it. > > Cheers. > RJF > >