Re: polynomial division
- To: mathgroup at smc.vnet.net
- Subject: [mg42007] Re: polynomial division
- From: Paul Abbott <paul at physics.uwa.edu.au>
- Date: Mon, 16 Jun 2003 03:57:40 -0400 (EDT)
- Organization: The University of Western Australia
- References: <bbmu7c$ju$1@smc.vnet.net> <bbq6eu$csv$1@smc.vnet.net> <bc6ngj$2gt$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
In article <bc6ngj$2gt$1 at smc.vnet.net>, Marian Otremba <marianUSUN at zeus.polsl.gliwice.pl> wrote: > OK if x<<1 > > for example > n=6; > p= x^2+x+1; > w1=Series[1/p,{x,0,n}] // Normal > Plot[1/p-w1,{x,0,1/2},PlotRange->All] Or, generally, n=6; p[x_] = 1/(x^2+x+1); q[x_,x0_:0] := Normal[p[x] + O[x,x0]^n] and for x << 1, q[x] Plot[p[x] - %, {x,0,1/2}, PlotRange->All]; > if x >>1 > > w2=(Series[(1/p) /. x->1/u,{u,0,n}]//Normal) /. u->1/x > Plot[1/p-w2,{x,2,5},PlotRange->All] For x >> 1, then q[x,Infinity] Plot[p[x] - %, {x,2,5}, PlotRange->All]; > if x about 1 > > w3=((Series[(1/p) /. x->1/(u+1),{u,0,n}]//Normal) /. u->1/x-1)//Expand > Plot[1/p-w3,{x,2/3,2},PlotRange->All] and for x ~ 1, q[x,1] Plot[p[x] - %, {x,2/3,2}, PlotRange->All]; Cheers, Paul -- Paul Abbott Phone: +61 8 9380 2734 School of Physics, M013 Fax: +61 8 9380 1014 The University of Western Australia (CRICOS Provider No 00126G) 35 Stirling Highway Crawley WA 6009 mailto:paul at physics.uwa.edu.au AUSTRALIA http://physics.uwa.edu.au/~paul