Re: ListNecklaces of n beads of |c| different colors (n!=c)?
- To: mathgroup at smc.vnet.net
- Subject: [mg42052] Re: ListNecklaces of n beads of |c| different colors (n!=c)?
- From: "Carl K. Woll" <carlw at u.washington.edu>
- Date: Tue, 17 Jun 2003 05:43:49 -0400 (EDT)
- Organization: University of Washington
- References: <bcjuvb$htp$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Maneesh, Something like this, perhaps? AllNecklaces[n_,m_,c_]:= Flatten[ListNecklaces[n,#,c]&/@ (Distribute[g@@Table[f@@m,{n}],f] /.g->(Sort[List[##]]&) /.f->(Union[List[##]]&)),1] For example, In[15]:= AllNecklaces[5,{R,G,B},Dihedral] Out[15]= {{B, B, B, B, B}, {B, B, B, B, G}, {B, B, B, B, R}, {B, B, B, G, G}, {B, B, G, B, G}, {B, B, B, G, R}, {B, B, G, B, R}, {B, B, B, R, R}, {B, B, R, B, R}, {B, B, G, G, G}, {B, G, B, G, G}, {B, B, G, G, R}, {B, B, G, R, G}, {B, G, B, G, R}, {B, G, G, B, R}, {B, B, G, R, R}, {B, B, R, G, R}, {B, G, B, R, R}, {B, G, R, B, R}, {B, B, R, R, R}, {B, R, B, R, R}, {B, G, G, G, G}, {B, G, G, G, R}, {B, G, G, R, G}, {B, G, G, R, R}, {B, G, R, G, R}, {B, G, R, R, G}, {B, R, G, G, R}, {B, G, R, R, R}, {B, R, G, R, R}, {B, R, R, R, R}, {G, G, G, G, G}, {G, G, G, G, R}, {G, G, G, R, R}, {G, G, R, G, R}, {G, G, R, R, R}, {G, R, G, R, R}, {G, R, R, R, R}, {R, R, R, R, R}} Confirming: In[16]:= Length[%] NumberOfNecklaces[5,3,Dihedral] Out[16]= 39 Out[17]= 39 Carl Woll Physics Dept U of Washington "maneesh" <maneesh at drunkenbastards.com> wrote in message news:bcjuvb$htp$1 at smc.vnet.net... > Hi all, > Is there anyway I can obtain a list of necklaces of n beads of |c| > different colors? > > I can certainly count the number of them, but I can't figure out how > to construct them in Mathematica... > > I shamefully admit to not understanding why Length[c] has to be equal > to n for ListNecklaces to work.... >