better version of Maxwell to Helmholtz
- To: mathgroup at smc.vnet.net
- Subject: [mg42106] better version of Maxwell to Helmholtz
- From: CAP F <Ferdinand.Cap at eunet.at>
- Date: Thu, 19 Jun 2003 03:59:27 -0400 (EDT)
- Sender: owner-wri-mathgroup at wolfram.com
Paul, Here is code 55, Maxwell to Helmholtz in a better format. Ferdinand (* c55 From Maxwell's to vector Helmholtz equations, see page 179 of the book. k=\[Omega]/c, c=1/Sqrt[eps], eps=\[CurlyEpsilon] *) <<Calculus`VectorAnalysis` $Packages Clear[H,El,t1,t2,t3,t4,t5,t6,t7,t8]; H[x_,y_,z_,t_]:={Hx[x,y,z]*Exp[I*k*t/Sqrt[eps]], Hy[x,y,z]*Exp[I*k*t/Sqrt[eps]],Hz[x,y,z]*Exp[I*k*t/Sqrt[eps]]}; El[x_,y_,z_,t_]:={Ex[x,y,z]*Exp[I*k*t/Sqrt[eps]], Ey[x,y,z]*Exp[I*k*t/Sqrt[eps]],Ez[x,y,z]*Exp[I*k*t/Sqrt[eps]]}; t1=Curl[El[x,y,z,t],Cartesian[x,y,z]]; t2=-D[H[x,y,z,t],t]; (* The induction equation is now: t1=t2 *)t1\[Equal]t2; t3=Curl[H[x,y,z,t],Cartesian[x,y,z]]; t4=eps*D[El[x,y,z,t],t]; (* t3=t4 is now the other Maxwell equation *)t3\[Equal]t4; t5=Curl[t1,Cartesian[x,y,z]]; (* Curl on curl El *) t6=Curl[t2,Cartesian[x,y,z]];(* Curl on D H,t *) t7=D[t2,t];(* Time derivative of Curl H *) t8=D[t4,t];(* Second time derivative of El *) Simplify[(t5-t8)]/Exp[I*k*t/Sqrt[eps]];(* This gives the vector Helmholtz equation for the electric field *) (* Now the vector equation for the magnetic field *) t9=D[t1,t]; t10=D[t2,t]; t11=Curl[t3,Cartesian[x,y,z]]; t12= Curl[t4, Cartesian[x,y,z]]; Simplify[(t11- eps t10 )/Exp[I*k*t/Sqrt[eps]] ];(* This gives the vector equation for the magnetic field. *) (* Now the 6 coupled scalar equations.*) Eq1=Simplify[(t5[[1]]-t8[[1]])/Exp[I*k*t/Sqrt[eps]]]; Eq2 =Simplify[( t5[[2]]-t8[[2]])/Exp[I*k*t/Sqrt[eps]]]; Eq3=Simplify[(t5[[3]]-t8[[3]])/Exp[I*k*t/Sqrt[eps]]]; Eq4=Simplify[(t11[[1]]-eps*t10[[1]])/Exp[I*k*t/Sqrt[eps]]]; Eq5=Simplify[(t11[[2]]-eps*t10[[2]])/Exp[I*k*t/Sqrt[eps]]]; Eq6=Simplify[(t11[[3]]-eps*t10[[3]])/Exp[I*k*t/Sqrt[eps]]];