[Date Index]
[Thread Index]
[Author Index]
Re: Fwd: Antiderivatives and Definite Integrals
 To: mathgroup at smc.vnet.net
 Subject: [mg39868] Re: Fwd: Antiderivatives and Definite Integrals
 From: "David W. Cantrell" <DWCantrell at sigmaxi.org>
 Date: Sun, 9 Mar 2003 05:28:55 0500 (EST)
 References: <b4c8vt$n9i$1@smc.vnet.net>
 Sender: ownerwrimathgroup at wolfram.com
Garry Helzer <gah at math.umd.edu> wrote:
[snip]
> > Redefine:
> >
> > In[6]:= f[x_] /; Pi < x < Pi = f[x]
> > Out[6]= 2*Sqrt[1 + Cos[x]]*Tan[x/2]
> >
> > In[7]:= f[x_] /; Pi < x < 3 Pi = f[x] + 4*Sqrt[2]
> > Out[7]= 4*Sqrt[2] + 2*Sqrt[1 + Cos[x]]*Tan[x/2]
>
> Or 4Sqrt[2]Round[x/(2Pi)]+ 2*Sqrt[1 + Cos[x]]*Tan[x/2] . But these
> formulas are less than perfect since they are indeterminate at odd
> multiples of Pi.
But of course there are "perfect" formulas for the antiderivative of
Sqrt[1 + Cos[x]]. I mentioned one such formula in the parent thread of
this one. If we let y denote Floor[(x+Pi)/(2*Pi)], then a "perfect" (and
maximally neat?) formula for the antiderivative is
2*Sqrt[2]*( (1)^y*Sin[x/2] + 2*y )
David Cantrell
Prev by Date:
RE: nth differences
Next by Date:
Re: Symbols and Lists
Previous by thread:
Re: Fwd: RE: Antiderivatives and Definite Integrals
Next by thread:
RE: Re: Fwd: Antiderivatives and Definite Integrals
