multiple of sum of fraction by common denominator keeps fractions in result
- To: mathgroup at smc.vnet.net
- Subject: [mg41585] multiple of sum of fraction by common denominator keeps fractions in result
- From: Friedrich Laher <mathefritz at schmieder-laher.de>
- Date: Wed, 28 May 2003 04:57:20 -0400 (EDT)
- Sender: owner-wri-mathgroup at wolfram.com
In[8]:=
\!\(\(1 - x\)\/\(5*\((1 - 2*x)\)\) - \(2 + x\)\/8 - 4 + \(2*x -
19\)\/80\ x\)
Out[8]=
\!\(\(-4\) + 1\/8\ \((\(-2\) - x)\) + \(1 - x\)\/\(5\ \((1 - 2\ x)\)\) +
1\/80\ x\ \((\(-19\) + 2\ x)\)\)
In[17]:=
Together[In[8]]
Out[17]=
\!\(\(324 - 635\ x - 60\ x\^2 + 4\ x\^3\)\/\(80\ \((\(-1\) + 2\ x)\)\)\)
In[18]:=
%*80*(-1+2x)
Out[18]=
\!\(324 - 635\ x - 60\ x\^2 + 4\ x\^3\)
In[19]:=
\!\(Expand[\((\(1 - x\)\/\(5*\((1 - 2*x)\)\) - \(2 + x\)\/8 -
4 + \(2*x - 19\)\/80\ x)\)*80*\((1 - 2*x)\)]\)
Out[19]=
\!\(\(-340\) + 16\/\(1 - 2\ x\) + 651\ x - \(48\ x\)\/\(1 - 2\ x\) +
60\ x\^2 + \(32\ x\^2\)\/\(1 - 2\ x\) - 4\ x\^3\)
In[20]:=
FullSimplify[Out[19]]
Out[20]=
-324+x (635-4 (-15+x) x)
In[21]:=
Expand[%]
Out[21]=
\!\(\(-324\) + 635\ x + 60\ x\^2 - 4\ x\^3\)
of what use could Out[1] be, why not directly Out[21] ?
- Follow-Ups:
- Re: multiple of sum of fraction by common denominator keeps fractions in result
- From: Daniel Lichtblau <danl@wolfram.com>
- Re: multiple of sum of fraction by common denominator keeps fractions in result