multiple of sum of fraction by common denominator keeps fractions in result
- To: mathgroup at smc.vnet.net
- Subject: [mg41585] multiple of sum of fraction by common denominator keeps fractions in result
- From: Friedrich Laher <mathefritz at schmieder-laher.de>
- Date: Wed, 28 May 2003 04:57:20 -0400 (EDT)
- Sender: owner-wri-mathgroup at wolfram.com
In[8]:= \!\(\(1 - x\)\/\(5*\((1 - 2*x)\)\) - \(2 + x\)\/8 - 4 + \(2*x - 19\)\/80\ x\) Out[8]= \!\(\(-4\) + 1\/8\ \((\(-2\) - x)\) + \(1 - x\)\/\(5\ \((1 - 2\ x)\)\) + 1\/80\ x\ \((\(-19\) + 2\ x)\)\) In[17]:= Together[In[8]] Out[17]= \!\(\(324 - 635\ x - 60\ x\^2 + 4\ x\^3\)\/\(80\ \((\(-1\) + 2\ x)\)\)\) In[18]:= %*80*(-1+2x) Out[18]= \!\(324 - 635\ x - 60\ x\^2 + 4\ x\^3\) In[19]:= \!\(Expand[\((\(1 - x\)\/\(5*\((1 - 2*x)\)\) - \(2 + x\)\/8 - 4 + \(2*x - 19\)\/80\ x)\)*80*\((1 - 2*x)\)]\) Out[19]= \!\(\(-340\) + 16\/\(1 - 2\ x\) + 651\ x - \(48\ x\)\/\(1 - 2\ x\) + 60\ x\^2 + \(32\ x\^2\)\/\(1 - 2\ x\) - 4\ x\^3\) In[20]:= FullSimplify[Out[19]] Out[20]= -324+x (635-4 (-15+x) x) In[21]:= Expand[%] Out[21]= \!\(\(-324\) + 635\ x + 60\ x\^2 - 4\ x\^3\) of what use could Out[1] be, why not directly Out[21] ?
- Follow-Ups:
- Re: multiple of sum of fraction by common denominator keeps fractions in result
- From: Daniel Lichtblau <danl@wolfram.com>
- Re: multiple of sum of fraction by common denominator keeps fractions in result