Re: Fw: Integrate...
- To: mathgroup at smc.vnet.net
- Subject: [mg44389] Re: [mg44304] Fw: Integrate...
- From: Dr Bob <drbob at bigfoot.com>
- Date: Fri, 7 Nov 2003 05:16:55 -0500 (EST)
- Reply-to: drbob at bigfoot.com
- Sender: owner-wri-mathgroup at wolfram.com
Try this: f = Cos[#1] + Sin[#1] &; Assuming[{b > a, a > 0}, Integrate[Abs[f[r]], {r, a, b}]] Simplify[D[%, b]] Expand[f[b]^2 - %^2] Simplify[%] (Cos[a + b]*(Sqrt[1 + Sin[2*a]] - Sqrt[1 + Sin[2*b]]) - Sin[a - b]*(Sqrt[1 + Sin[2*a]] + Sqrt[1 + Sin[2*b]]))/ ((Cos[a] + Sin[a])*(Cos[b] + Sin[b])) Sqrt[1 + Sin[2*b]] -1 + Cos[b]^2 + 2*Cos[b]*Sin[b] + Sin[b]^2 - Sin[2*b] 0 Sqrt[1 + Sin[2*r]] is equal to the original integrand. Bobby Fw: Integrate... Subject: [mg44389] [mg44304] Fw: Integrate... From: "Christos Argyropoulos M.D." <argchris at otenet.gr> To: mathgroup at smc.vnet.net Hi, I think the problem goes deeper than simply mixing symbolic/numerical stuff. Try symbolic integration of the original function to get: In[9]:= Integrate[Abs[ Cos[r] + Sin[r]], {r, a,b}] Out[9]= \!\(\((\(-a\) + b)\)\ \((\(-\(\(Cos[a]\ \ at \((Cos[a] + Sin[a])\)\^2 - Sin[a]\ \ at \((Cos[a] + Sin[a])\)\^2\)\/\(\((a - b)\)\ \((Cos[a] + Sin[a])\)\)\)\) + \(Cos[b]\ \ at \((Cos[b] + Sin[b])\)\^2 - \ Sin[b]\ \ at \((Cos[b] + Sin[b])\)\^2\)\/\(\((a - b)\)\ \((Cos[b] + Sin[b])\)\))\ \)\) Simplification of the result gives: \!\(\(\((Cos[a] - Sin[a])\)\ \ at \(1 + Sin[2\ a]\)\)\/\(Cos[a] + Sin[a]\) + \ \(\((\(-Cos[b]\) + Sin[b])\)\ \ at \(1 + Sin[2\ b]\)\)\/\(Cos[b] + Sin[b]\)\) Results of the original, simplified versions and the numerical integration agree for 0<=a<=2.35 and 0<=b<2.35 After they diverge dramatically. I suspect this is a bug somewhere inside Integrate, but I do not have the guts to evaluate the integral by hand to see, if the expression returned for symbolic a,b are correct. Any ideas? Christos Argyropoulos Patras Greece