Mathematica 9 is now available
Services & Resources / Wolfram Forums
-----
 /
MathGroup Archive
2003
*January
*February
*March
*April
*May
*June
*July
*August
*September
*October
*November
*December
*Archive Index
*Ask about this page
*Print this page
*Give us feedback
*Sign up for the Wolfram Insider

MathGroup Archive 2003

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: orthonormalized eigenvectors

  • To: mathgroup at smc.vnet.net
  • Subject: [mg44504] Re: orthonormalized eigenvectors
  • From: Olaf Rogalsky <olaf.rogalsky at theorie1.physik.uni-erlangen.de>
  • Date: Wed, 12 Nov 2003 08:02:12 -0500 (EST)
  • References: <bonnja$h9h$1@smc.vnet.net>
  • Sender: owner-wri-mathgroup at wolfram.com

Mahn-Soo Choi wrote:

> This is very frustrating to me because I have to calculate eigenvalues
> and corresponding *orthonormalized* eigenvectors numerically for quite
> big Hermitian matrices.
> 
> Is there any effecient method working with Mathematica to calculate
> numerically the eigenvalues and corresponding *orthonormalized*
> eigenvectors for Hermitian matrices with possibly *degenerate*
> eigenvalues?

Use GramSchmidt to find an orthogonal basis in the degenerated
subspace(s).
-- 
+-------------------------------------------------------------------+
I Dr. rer. nat. Olaf Rogalsky     Institut fuer Theoretische Physik I
I                                 Universitaet Erlangen-Nuernberg   I
I Tel.: 09131 8528440             Staudtstr. 7 B3                   I
I Fax.: 09131 8528444             D-91058 Erlangen                  I
| rogalsky at theorie1.physik.uni-erlangen.de                          I
+-------------------------------------------------------------------+


  • Prev by Date: Re: plotting streamlines from vector data
  • Next by Date: Re: Unformatted File IO
  • Previous by thread: orthonormalized eigenvectors
  • Next by thread: Re: orthonormalized eigenvectors