[Date Index]
[Thread Index]
[Author Index]
Re: Improper integral
*To*: mathgroup at smc.vnet.net
*Subject*: [mg44642] Re: Improper integral
*From*: poujadej at yahoo.fr (Jean-Claude Poujade)
*Date*: Wed, 19 Nov 2003 04:59:09 -0500 (EST)
*References*: <200311170838.DAA01254@smc.vnet.net> <bpd13t$c8a$1@smc.vnet.net>
*Sender*: owner-wri-mathgroup at wolfram.com
Andrzej Kozlowski <akoz at mimuw.edu.pl> wrote in message news:<bpd13t$c8a$1 at smc.vnet.net>...
> On 17 Nov 2003, at 17:38, Jean-Claude Poujade wrote:
>
> > Bonjour le groupe,
> >
> > I'm not a mathematician and I wonder why Mathematica doesn't return 0
> > for this doubly infinite improper integral :
> >
> > In[1]:=$Version
> > Out[1]=4.1 for Microsoft Windows (November 2, 2000)
> >
> > In[2]:=Integrate[x/(1+x^2),{x,-Infinity,Infinity},PrincipalValue->True]
> > Integrate::idiv[...]does not converge[...]
> > Out[2]:=Integrate[x/(1+x^2),{x,-Infinity,Infinity},PrincipalValue-
> > >True]
> >
> > maybe it's different with Mathematica 5.0 ?
> > ---
> > jcp
> >
> No it is the same, and it is correct.
[...]
Let me just quote the "Ask Dr.Math" Forum :
You have just described what is known as
the Cauchy principal value integral.
There are essentially two types:
the first is the doubly infinite improper integral, e.g.,
G = Integrate[F[x], {x,-Infinity,Infinity}]
for which the Cauchy principal value is defined as
PV(G) = Limit[Integrate[F[x], {x,-R,R}], R -> Infinity].
[...]
So what should I think ?
---
jcp
Prev by Date:
**Re: Alternative to bivariate Taylor series**
Next by Date:
**Re: Re: filled plot on part of x-interval**
Previous by thread:
**Re: Improper integral**
Next by thread:
**Re: Improper integral**
| |