RE: Log Equation

*To*: mathgroup at smc.vnet.net*Subject*: [mg44749] RE: [mg44744] Log Equation*From*: "Florian Jaccard" <florian.jaccard at eiaj.ch>*Date*: Tue, 25 Nov 2003 00:45:17 -0500 (EST)*Reply-to*: <florian.jaccard at eiaj.ch>*Sender*: owner-wri-mathgroup at wolfram.com

Yes, the équation you want to solve is transcendental, so the only ways to solve it are numerical. The most simple way is to use FindRoot. But first, don't forget to draw f(x)=(1-x)/Log(x)-y ! You have to see an approximation of the root you are searching ! For example, let y = -2 : In[1]:= Plot[(1 - x)/Log[x] + 2, {x, 0, 10},PlotRange -> {-4, 4}]; In[2]:= FindRoot[(1 - x)/Log[x] == -2, {x, 2}] Meilleures salutations Florian Jaccard -----Message d'origine----- De : Bernard Bourée [mailto:bernard at bouree.net] Envoyé : lun., 24. novembre 2003 06:05 À : mathgroup at smc.vnet.net Objet : [mg44744] Log Equation I 'm trying to find a way to solve the equation y = (1-x)/ Log(x) How can I find x when y is known ? Is there a numerical method ? with series development? -- Bernard Bourée bernard at bouree.net