problem with the cells in my last NDSolve error post ...
- To: mathgroup at smc.vnet.net
- Subject: [mg43392] problem with the cells in my last NDSolve error post ...
- From: sean kim <shawn_s_kim at yahoo.com>
- Date: Tue, 16 Sep 2003 04:35:42 -0400 (EDT)
- Sender: owner-wri-mathgroup at wolfram.com
hello group it appears that yahoo does something with the lines, and the I copied and pasted for the NDsolve errors isn't properly formatted. I haven't been able to locate the problem. but I think its the line breaks in yahoo email. im changing the width to 99 which is maximum and see if that fixes the problem. so here's goes nothing. let me know if you would like to see my notebook. i could send it as an attachment( which i think works better...) \!\(\* RowBox[{ RowBox[{ RowBox[{"odes", " ", "=", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["b", "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "==", \(v1 - d1\ b[t] - bi\ k1\ b[t] + k2\ c[t]\)}], ",", RowBox[{ RowBox[{ SuperscriptBox["c", "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "==", \(bi\ k1\ b[t] - k2\ c[t] - k3\ c[t]\)}], ",", RowBox[{ RowBox[{ SuperscriptBox["d", "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "==", \(k3\ c[t] - k4\ d[t]\ e[t] + k5\ f[t] + k6\ f[t] - k7\ d[t]\ i[t] + k8\ j[t] - k12\ d[t]\ k[t] + k13\ l[t]\)}], ",", RowBox[{ RowBox[{ SuperscriptBox["f", "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "==", \(k4\ d[t]\ e[t] - k5\ f[t] - k6\ f[t]\)}], ",", RowBox[{ RowBox[{ SuperscriptBox["j", "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "==", \(k7\ d[t]\ i[t] - k8\ j[t] - k9\ j[t]\)}], ",", RowBox[{ RowBox[{ SuperscriptBox["p", "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "==", \(v2 - d2\ p[t] - k19\ o[t]\ p[t] + k20\ q[t]\)}], ",", RowBox[{ RowBox[{ SuperscriptBox["n", "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "==", \(v7 - d7\ n[t] - k17\ m[t]\ n[t] + k18\ o[t] - k23\ n[t]\ s[t] + k24\ t[t]\)}], ",", RowBox[{ RowBox[{ SuperscriptBox["t", "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "==", \(k23\ n[t]\ s[t] - k24\ t[t]\)}], ",", RowBox[{ RowBox[{ SuperscriptBox["h", "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "==", \(v6 - d6\ h[t] - k10\ h[t]\ i[t] + k11\ k[t] + k22\ q[t]\)}], ",", RowBox[{ RowBox[{ SuperscriptBox["k", "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "==", \(k10\ h[t]\ i[t] - k11\ k[t] - k12\ d[t]\ k[t] + k13\ l[t]\)}], ",", RowBox[{ RowBox[{ SuperscriptBox["l", "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "==", \(k12\ d[t]\ k[t] - k13\ l[t] - k14\ l[t]\)}], ",", RowBox[{ RowBox[{ SuperscriptBox["u", "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "==", \(v3 - d3\ u[t] - k25\ m[t]\ u[t] + k26\ v[t] + k27\ v[t]\)}], ",", RowBox[{ RowBox[{ SuperscriptBox["e", "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "==", \(v4 - d4\ e[t] - k15\ e[t] - k4\ d[t]\ e[t] + k5\ f[t] - k28\ e[t]\ i[t] + k16\ w[t] + k29\ x[t]\)}], ",", RowBox[{ RowBox[{ SuperscriptBox["w", "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "==", \(k15\ e[t] + k27\ v[t] - k16\ w[t]\)}], ",", RowBox[{ RowBox[{ SuperscriptBox["g", "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "==", \(k6\ f[t] - k15\ g[t] + k16\ m[t]\)}], ",", RowBox[{ RowBox[{ SuperscriptBox["m", "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "==", \(k15\ g[t] - k16\ m[t] - k17\ m[t]\ n[t] + k18\ o[t] - k25\ m[t]\ u[t] + k26\ v[t]\)}], ",", RowBox[{ RowBox[{ SuperscriptBox["o", "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "==", \(k17\ m[t]\ n[t] - k18\ o[t] - k19\ o[t]\ p[t] + k20\ q[t]\)}], ",", RowBox[{ RowBox[{ SuperscriptBox["q", "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "==", \(k19\ o[t]\ p[t] - k20\ q[t]\)}], ",", RowBox[{ RowBox[{ SuperscriptBox["v", "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "==", \(k25\ m[t]\ u[t] - k26\ v[t] - k27\ v[t]\)}], ",", RowBox[{ RowBox[{ SuperscriptBox["x", "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "==", \(k28\ e[t]\ i[t] - k29\ x[t] - k30\ x[t]\)}], ",", RowBox[{ RowBox[{ SuperscriptBox["s", "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "==", \(v8 - d8\ s[t] - k23\ n[t]\ s[t] + k24\ t[t]\)}], ",", RowBox[{ RowBox[{ SuperscriptBox["i", "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "==", \(v5 - d5\ i[t] - k7\ d[t]\ i[t] - k28\ e[t]\ i[t] - k10\ h[t]\ i[t] + k8\ j[t] + k9\ j[t] + k11\ k[t] + k14\ l[t] + k29\ x[t] + k30\ x[t]\)}], ",", RowBox[{ RowBox[{ SuperscriptBox["r", "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "==", \(k21\ q[t]\)}]}], "}"}]}], ";"}], "\[IndentingNewLine]", "\[IndentingNewLine]", \(ics\ = \ {b[0] == v1/d1, p[0] == v2/d2, u[0] == v3/d3, w[0] == \((d5\ k15\ \((k29 + k30)\)\ v4)\)/\((k16\ \((d4\ d5\ k29 + d4\ d5\ k30 + k28\ k30\ v5)\))\), t[0] == \(k23\ v7\ v8\)\/\(d7\ d8\ k24\), k[0] == \(k10\ v5\ v6\)\/\(d5\ d6\ k11\), x[0] == \(k28\ v4\ v5\)\/\(d4\ d5\ k29 + d4\ d5\ k30 + k28\ k30\ v5\ \), n[0] == v7\/d7, h[0] == v6\/d6, s[0] == v8\/d8, e[0] == \(d5\ \((k29 + k30)\)\ v4\)\/\(d4\ d5\ k29 + d4\ d5\ k30 + \ k28\ k30\ v5\), i[0] == v5\/d5, c[0] == 0, d[0] == 0, f[0] == 0, j[0] == 0, q[0] == 0, g[0] == 0, m[0] == 0, l[0] == 0, o[0] == 0, v[0] == 0, r[0] == 0};\), "\[IndentingNewLine]", "\[IndentingNewLine]", \(vars\ = \ {b[t], c[t], d[t], f[t], j[t], p[t], n[t], t[t], h[t], k[t], l[t], u[t], e[t], w[t], g[t], m[t], o[t], q[t], v[t], x[t], s[t], i[t], r[t]};\), "\[IndentingNewLine]", "\[IndentingNewLine]", \(For[\ ii\ = \ 1, \ ii < 5, \ \[IndentingNewLine]np = \ {k1 -> \ \((Random[ Real, \ {1, \ 10}])\)*\ 10^\ \((Random[Integer, \ {4, \ 8}])\), k2\ -> \((Random[Real, \ {1, \ 10}])\)*\ 10^\ \((Random[ Integer, \ {\(-7\), \ \(-4\)}])\), \ \ \[IndentingNewLine]k3 -> \ \((Random[Real, \ {1, \ 10}])\)\ *\ 10^\ \((Random[Integer, \ {1, \ 3}])\), \ k4 -> \ \((Random[Real, \ {1, \ 10}])\)\ *\ 10^\ \((Random[ Integer, \ {5, \ 8}])\), \ \[IndentingNewLine]k5 -> \ \((Random[ Real, \ {1, \ 10}])\)*10^\ \((Random[ Integer, \ {\(-4\), \ \(-1\)}])\), \ k6 -> \((Random[Real, \ {1, \ 10}])\)\ *\ 10^\ \((Random[ Integer, \ {1, \ 2}])\)\ , \[IndentingNewLine]k7 -> \ \((Random[ Real, \ {1, \ 10}])\)\ *\ 10^\ \((Random[Integer, \ {1, \ 3}])\)\ , \ k8 -> \ \ \((Random[Real, \ {1, \ 10}])\)\ *\ 10^\((Random[ Integer, \ {\(-7\), \ \(-4\)}])\), \[IndentingNewLine]k9 \ -> \ \((Random[Real, \ {19, \ 10}])\)*\ 10^\((Random[Integer, \ {\(-6\), \ \(-3\)}])\), k10 -> \ \((Random[Real, \ {1, \ 10}])\)\ *\ 10^\ \((Random[ Integer, \ {1, \ 3}])\), \ \ \[IndentingNewLine]k11 -> \ \((Random[ Real, \ {1, \ 10}])\)\ *\ 10^\((Random[Integer, \ {\(-7\), \ \(-4\)}])\), k12 -> \((Random[Real, \ {1, \ 10}])\)\ *\ 10^\ \((Random[ Integer, \ {1, \ 3}])\), \ \[IndentingNewLine]k13 -> \((Random[ Real, \ {1, \ 10}])\)\ *\ 10^\((Random[Integer, \ {\(-7\), \ \(-4\)}])\), k14 -> \ \ \((Random[Real, \ {1, \ 10}])\)*\ 10^\((Random[ Integer, \ {\(-6\), \ \(-3\)}])\), \[IndentingNewLine]k15 \ -> \ \((Random[Real, \ {1, \ 10}])\)*\ 10^\ \((Random[Integer, \ {\(-4\), \ \(-1\)}])\), \ k16 -> \((Random[Real, \ {1, \ 10}])\)*\ 10^\ \((Random[Integer, \ {\(-4\), \ \(-1\)}])\), \ k17 -> \ \ \((Random[Real, \ {1, \ 10}])\)\ *\ 10^\ \((Random[Integer, \ {2, \ 5}])\)\ , \ k18 -> \((Random[Real, \ {1, \ 10}])\)\ *\ 10^\ \((Random[ Integer, \ {\(-7\), \ \(-4\)}])\)\ , \ \[IndentingNewLine]k19 -> \((Random[Real, \ {1, \ 10}])\)\ *\ 10^\ \((Random[Integer, \ {3, \ 6}])\)\ , \ k20 -> \ \((Random[Real, \ {1, \ 10}])\)\ *\ 10^\((Random[ Integer, \ {\(-8\), \ \(-5\)}])\)\ , \ \ \[IndentingNewLine]k21 -> \((Random[Real, \ {1, \ 10}])\)\ *\ 10^\ \((Random[Integer, \ {1, \ 3}])\), k22\ -> \((Random[Real, \ {1, \ 10}])\)\ *\ 10^\((Random[ Integer, \ {1, \ 3}])\), \ \[IndentingNewLine]k23 -> \ \((Random[ Real, \ {1, \ 10}])\)\ *\ 10^\ \((Random[Integer, \ {3, \ 6}])\)\ , \ k24 -> \ \((Random[Real, \ {1, \ 10}])\)\ *\ 10^\ \((Random[Integer, \ {\(-7\), \ \(-4\)}])\)\ , \ k25 -> \ \((Random[Real, \ {1, \ 10}])\)\ *\ 10^\ \((Random[Integer, \ {3, \ 6}])\), \ k26 -> \ \((Random[Real, \ {1, \ 10}])\)\ *\ 10^\ \((Random[ Integer, \ {\(-7\), \ \(-5\)}])\)\ , \ \ \[IndentingNewLine]k27 -> \ \((Random[Real, \ {1, \ 10}])\)\ *\ 10^\ \((Random[Integer, \ {1, \ 4}])\)\ , \ k28 -> \ \ \((Random[Real, \ {1, \ 10}])\)\ *\ 10^\ \((Random[Integer, \ {1, \ 3}])\), \ k29 -> \ \((Random[Real, \ {1, \ 10}])\)\ *\ 10^\ \((Random[Integer, \ {\(-7\), \ \(-4\)}])\), \ k30 -> \ \((Random[Real, \ {1, \ 10}])\)*\ 10^\ \((Random[Integer, \ {\(-6\), \ \(-3\)}])\), v1 -> \((Random[Real, \ {1, \ 10}])\)*\ 10^\ \((Random[Integer, \ {\(-12\), \ \(-9\)}])\), d1 -> \ \((Random[Real, \ {1, \ 10}])\)*\ 10^\ \((Random[ Integer, \ {\(-6\), \ \(-3\)}])\), \[IndentingNewLine]v2 \ -> \((Random[Real, \ {1, \ 10}])\)*\ 10^\ \((Random[Integer, \ {\(-10\), \ \(-8\)}])\), d2 -> \((Random[Real, \ {1, \ 10}])\)*\ 10^\ \((Random[ Integer, \ {\(-6\), \ \(-3\)}])\), \[IndentingNewLine]v3 \ -> \((Random[Real, \ {1, \ 10}])\)*\ 10^\((Random[Integer, \ {\(-11\), \ \(-8\)}])\), \ d3 -> \((Random[Real, \ {1, \ 10}])\)*\ 10^\ \((Random[ Integer, \ {\(-6\), \ \(-3\)}])\), \[IndentingNewLine]v4 \ -> \((Random[Real, \ {1, \ 10}])\)*\ 10^\ \((Random[Integer, \ {\(-10\), \ \(-8\)}])\), d4 -> \((Random[Real, \ {1, \ 10}])\)*\ 10^\ \((Random[Integer, \ {\(-6\), \ \(-3\)}])\), v5 -> \((Random[Real, \ {1, \ 10}])\)*\ 10^\((Random[Integer, \ {\(-10\), \ \(-8\)}])\), d5 -> \((Random[Real, \ {1, \ 10}])\)*\ 10^\ \((Random[ Integer, \ {\(-6\), \ \(-3\)}])\), \[IndentingNewLine]v6 \ -> \((Random[Real, \ {1, \ 10}])\)*\ 10^\((Random[Integer, \ {\(-10\), \ \(-8\)}])\), d6 -> \ \((Random[Real, \ {1, \ 10}])\)*\ 10^\ \((Random[ Integer, \ {\(-6\), \ \(-3\)}])\), \[IndentingNewLine]v7 \ -> \ \((Random[Real, \ {1, \ 10}])\)*\ 10^\((Random[Integer, \ {\(-10\), \ \(-8\)}])\), d7 -> \ \((Random[Real, \ {1, \ 10}])\)*\ 10^\ \((Random[ Integer, \ {\(-6\), \ \(-3\)}])\), \[IndentingNewLine]v8 \ -> \ \((Random[Real, \ {1, \ 10}])\)*\ 10^\((Random[Integer, \ {\(-10\), \ \(-8\)}])\), \ d8 -> \ \((Random[Real, \ {1, \ 10}])\)*\ 10^\ \((Random[ Integer, \ {\(-6\), \ \(-3\)}])\), \[IndentingNewLine]bi \ -> \ \((Random[Real, \ {1, \ 10}])\)\ *\ 10^\ \((Random[ Integer, \ {\(-10\), \(-5\)}])\)}; \[IndentingNewLine]\ \[IndentingNewLine]nics\ = \ ics /. \ np; \[IndentingNewLine]nodes = \ odes /. \ np; \[IndentingNewLine]Join[nodes, \ nics]; \[IndentingNewLine]Print["\< iteration = \>", ii\ , \ np, \ nics\ ]; \[IndentingNewLine]\[IndentingNewLine]soln\ = \ NDSolve[\ Join[nodes, \ nics], \ vars, \ {t, \ 0, \ 100000}, MaxSteps -> 1000000]; \[IndentingNewLine]\[IndentingNewLine]pb = \ Plot[Evaluate[b[t] /. \ soln], \ {t, \ 0, \ 100000}, \ PlotRange -> Automatic, \ PlotLabel -> b, \ DisplayFunction -> Identity]; \[IndentingNewLine]pc\ = \ \ Plot[ Evaluate[c[t] /. \ soln], \ {t, \ 0, \ 100000}, \ PlotRange -> Automatic, \ PlotLabel -> c, DisplayFunction -> Identity]; \[IndentingNewLine]pd\ = \ Plot[Evaluate[c[t] /. \ soln], \ {t, \ 0, \ 100000}, \ PlotRange -> Automatic, \ PlotLabel -> d, DisplayFunction -> Identity]; \[IndentingNewLine]pf\ = \ Plot[Evaluate[f[t] /. \ soln], \ {t, \ 0, \ 100000}, \ PlotRange -> Automatic, \ PlotLabel -> f, DisplayFunction -> Identity]; \[IndentingNewLine]pj = \ Plot[Evaluate[j[t] /. \ soln], \ {t, \ 0, \ 100000}, \ PlotRange -> Automatic, \ PlotLabel -> j, DisplayFunction -> Identity]; \[IndentingNewLine]pp\ = \ Plot[Evaluate[p[t] /. \ soln], \ {t, \ 0, \ 100000}, \ PlotRange -> Automatic, \ PlotLabel -> p, DisplayFunction -> Identity]; \[IndentingNewLine]pn\ = \ Plot[Evaluate[n[t] /. \ soln], \ {t, \ 0, \ 100000}, \ PlotRange -> Automatic, \ PlotLabel -> n, DisplayFunction -> Identity]; \[IndentingNewLine]pt\ = \ Plot[Evaluate[t[t] /. \ soln], \ {t, \ 0, \ 100000}, \ PlotRange -> Automatic, \ PlotLabel -> t, DisplayFunction -> Identity]; \[IndentingNewLine]ph\ = \ Plot[Evaluate[h[t] /. \ soln], \ {t, \ 0, \ 100000}, \ PlotRange -> Automatic, \ PlotLabel -> h, DisplayFunction -> Identity]; \[IndentingNewLine]pk\ = \ Plot[Evaluate[k[t] /. \ soln], \ {t, \ 0, \ 100000}, \ PlotRange -> Automatic, \ PlotLabel -> k, DisplayFunction -> Identity]; \[IndentingNewLine]pl = \ Plot[Evaluate[l[t] /. \ soln], \ {t, \ 0, \ 100000}, \ PlotRange -> Automatic, \ PlotLabel -> l, DisplayFunction -> Identity]; \[IndentingNewLine]pu\ = \ Plot[Evaluate[u[t] /. \ soln], \ {t, \ 0, \ 100000}, \ PlotRange -> Automatic, \ PlotLabel -> u, DisplayFunction -> Identity]; \[IndentingNewLine]pe = \ Plot[Evaluate[e[t] /. \ soln], \ {t, \ 0, \ 100000}, \ PlotRange -> Automatic, \ PlotLabel -> e, DisplayFunction -> Identity]; \[IndentingNewLine]pw\ = \ Plot[Evaluate[w[t] /. \ soln], \ {t, \ 0, \ 100000}, \ PlotRange -> Automatic, \ PlotLabel -> w, DisplayFunction -> Identity]; \[IndentingNewLine]pg\ = \ Plot[Evaluate[g[t] /. \ soln], \ {t, \ 0, \ 100000}, \ PlotRange -> Automatic, \ PlotLabel -> g, DisplayFunction -> Identity]; \[IndentingNewLine]pm\ = \ Plot[Evaluate[m[t] /. \ soln], \ {t, \ 0, \ 100000}, \ PlotRange -> Automatic, \ PlotLabel -> m, DisplayFunction -> Identity]; \[IndentingNewLine]po\ = \ Plot[Evaluate[o[t] /. \ soln], \ {t, \ 0, \ 100000}, \ PlotRange -> Automatic, \ PlotLabel -> o, DisplayFunction -> Identity]; \[IndentingNewLine]pq\ = \ Plot[Evaluate[q[t] /. \ soln], {t, \ 0, \ 100000}, \ PlotRange -> Automatic, \ PlotLabel -> q, DisplayFunction -> Identity]; \[IndentingNewLine]pv\ = \ Plot[Evaluate[v[t] /. \ soln], \ {t, \ 0, \ 100000}, \ PlotRange -> Automatic, \ PlotLabel -> v, DisplayFunction -> Identity]; \[IndentingNewLine]px\ = \ Plot[Evaluate[x[t] /. \ soln], \ {t, \ 0, \ 100000}, \ PlotRange -> Automatic, \ PlotLabel -> x, DisplayFunction -> Identity]; \[IndentingNewLine]ps\ = \ Plot[Evaluate[s[t] /. \ soln], \ {t, \ 0, \ 100000}, \ PlotRange -> Automatic, \ PlotLabel -> s, DisplayFunction -> Identity]; \[IndentingNewLine]pi\ = \ Plot[Evaluate[i[t] /. \ soln], \ {t, \ 0, \ 100000}, \ PlotRange -> Automatic, \ PlotLabel -> i, DisplayFunction -> Identity]; \[IndentingNewLine]pr\ = \ Plot[Evaluate[r[t] /. \ soln], \ {t, \ 0, \ 100000}, \ PlotRange -> Automatic, \ PlotLabel -> r, \ DisplayFunction -> Identity]; \[IndentingNewLine]\[IndentingNewLine]Show[ GraphicsArray[{{pb, pc, \ pd, pf}, {\ pj, pp, pn, pt}, \ {ph, pk, pl, pu}, {pe\ , pw\ , \ pg, pm}, {po\ , pq\ , pv\ , \ px}\ , \ {ps, pi, \ pr\ }}, \ ImageSize -> \ 750]]; \[IndentingNewLine]\[IndentingNewLine]Share[]; \ \[IndentingNewLine]\(ii++\)]\)}]\) ===== when riding a dead horse, some dismount. while others... write memoirs on the subject of riding a dead horse. __________________________________ Do you Yahoo!? The New Yahoo! Search - Faster. Easier. Bingo. http://search.yahoo.com