Re: replicating variables
- To: mathgroup at smc.vnet.net
- Subject: [mg43690] Re: replicating variables
- From: Jens-Peer Kuska <kuska at informatik.uni-leipzig.de>
- Date: Tue, 30 Sep 2003 16:42:38 -0400 (EDT)
- Organization: Universitaet Leipzig
- References: <bl8hci$8d6$1@smc.vnet.net>
- Reply-to: kuska at informatik.uni-leipzig.de
- Sender: owner-wri-mathgroup at wolfram.com
Hi, I hope you are able to enter the equations in the *correct* Mathematica syntax sol = NDSolve[{ a'[t] == a[t] (3 - 2 b[t] - a[t]), b'[t] == b[t] (2 - a[t] - b[t]), a[0] == 2, b[0] == 1}, {a[t], b[t]}, {t, 0, 20}] ParametricPlot[Evaluate[{a[t], b[t]} /. sol[[1]]], {t, 0, 20}] and ParametricPlot3D[Evaluate[{t, a[t], b[t]} /. sol[[1]]], {t, 0, 20}, BoxRatios -> {1, 1, 1}] will help you. Regards Jens Young Kim wrote: > > Hi, > > Let's say I have two non linear differential equations which cannot be > analytically solved, > for example, > > a[t]' == a[t] { 3 - 2 b[t] - a[t] } > b[t]' == b[t] { 2 - a[t] - b[t] } > > What do I need to do if I want to draw parametric curve of > r[t] = { a[t], b[t] }, or { a[t], b[t], t } in 3D where a[t] , b[t] > are the numerical solutions of the preceding equations. > Thanks. > > Young > >