MathGroup Archive 2003

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: replicating variables

  • To: mathgroup at smc.vnet.net
  • Subject: [mg43690] Re: replicating variables
  • From: Jens-Peer Kuska <kuska at informatik.uni-leipzig.de>
  • Date: Tue, 30 Sep 2003 16:42:38 -0400 (EDT)
  • Organization: Universitaet Leipzig
  • References: <bl8hci$8d6$1@smc.vnet.net>
  • Reply-to: kuska at informatik.uni-leipzig.de
  • Sender: owner-wri-mathgroup at wolfram.com

Hi,

I hope you are able to enter the equations in the
*correct* Mathematica syntax

sol = NDSolve[{
       a'[t] == a[t] (3 - 2 b[t] - a[t]),
       b'[t] == b[t] (2 - a[t] - b[t]), 
       a[0] == 2, b[0] == 1}, {a[t], b[t]}, {t, 0, 
      20}]


ParametricPlot[Evaluate[{a[t], b[t]} /. sol[[1]]], {t, 0, 20}]

and

ParametricPlot3D[Evaluate[{t, a[t], b[t]} /. sol[[1]]], {t, 0, 20}, 
  BoxRatios -> {1, 1, 1}]

will help you.

Regards
  Jens

Young Kim wrote:
> 
> Hi,
> 
>   Let's say I have two non linear differential equations which cannot be
> analytically solved,
>   for example,
> 
>   a[t]' == a[t] { 3 - 2 b[t] - a[t] }
>   b[t]' == b[t] { 2 - a[t] - b[t] }
> 
>   What do I need to do if I want to draw parametric curve of
>   r[t] = { a[t], b[t] }, or { a[t], b[t], t } in 3D where a[t] , b[t]
> are the numerical solutions of the preceding equations.
>   Thanks.
> 
>   Young
> 
>


  • Prev by Date: Re: replicating variables
  • Next by Date: Re: webMathematica:MSPValues and TEXTAREA
  • Previous by thread: Re: replicating variables
  • Next by thread: Re: replicating variables