[Date Index]
[Thread Index]
[Author Index]
Re: Problem with FourierTransform
*To*: mathgroup at smc.vnet.net
*Subject*: [mg49929] Re: Problem with FourierTransform
*From*: "Steve Luttrell" <steve_usenet at _removemefirst_luttrell.org.uk>
*Date*: Fri, 6 Aug 2004 03:09:54 -0400 (EDT)
*References*: <cetevp$6hf$1@smc.vnet.net>
*Sender*: owner-wri-mathgroup at wolfram.com
This works OK in version 5.0.1.
FourierTransform[Sin[t^2]/2 + 1/2, t, w]
gives
Sqrt[Pi/2]*DiracDelta[w] + (1/4)*(Cos[w^2/4] - Sin[w^2/4])
and
FourierTransform[Sin[t^2/c]/2 + 1/2, t, w]
gives
Sqrt[Pi/2]*DiracDelta[w] - (I*(Cos[(c*w^2)/4] -
I*Sin[(c*w^2)/4])*(Sqrt[I/c] - Sqrt[-(I/c)]*Cos[(c*w^2)/2] +
(-(I/c))^(3/2)*c*Sin[(c*w^2)/2]))/(4*Sqrt[2]*Sqrt[1/c^2])
which reduces to the first case thus
FullSimplify[% /. c -> 1]
Steve Luttrell
"Oliver" <ofr at interims.de> wrote in message
news:cetevp$6hf$1 at smc.vnet.net...
> Why doesn't this work:
> This FT can be computed without problems
> FourierTransform[Sin[t^2]/2+1/2]
> But this one
> FourierTransform[Sin[t^2/c]/2+1/2]
> gives error:
> Simplify::"fas": "Warning: self-contradictory
> assumptions encountered."
> Why?
>
> Oliver
>
Prev by Date:
**Re: Problem with eval. of neg. cube root of neg. #**
Next by Date:
**NonlinearRegress**
Previous by thread:
**Problem with FourierTransform**
Next by thread:
**Re: Problem with FourierTransform**
| |