Re: Can this integration be done?
- To: mathgroup at smc.vnet.net
- Subject: [mg50109] Re: [mg50074] Can this integration be done?
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Sun, 15 Aug 2004 03:14:43 -0400 (EDT)
- Reply-to: hanlonr at cox.net
- Sender: owner-wri-mathgroup at wolfram.com
Clear[a,b,c,x, soln]; soln[a_,b_,c_] := Evaluate[Module[{x,int}, int = Integrate[x/((a+x)*(b+(c+x^2)^2)),x]; FullSimplify[Limit[int , x->Infinity]- (int /. x->0)]]]; soln[a,b,c] (I*Pi*((c*(Sqrt[1/(c + I*Sqrt[b])] - Sqrt[1/(c - I*Sqrt[b])]) + I*Sqrt[b]* (Sqrt[1/(c - I*Sqrt[b])] + Sqrt[1/(c + I*Sqrt[b])]))*a^2 + (c^2 + b)*(Sqrt[1/(c + I*Sqrt[b])] - Sqrt[1/(c - I*Sqrt[b])])) + 2*a*(a^2 + c)*ArcCot[c/Sqrt[b]] + a*Sqrt[b]*(4*Log[a] - Log[c^2 + b]))/ (4*Sqrt[b]*((a^2 + c)^2 + b)) While this will not work for all values of the parameters, it can provide results: Module[{a=1,b=1,c=1, s}, {s=FullSimplify[soln[a,b,c]],Simplify[s-Integrate[x/((a+x)*(b+(c+x^2)^2)),{\ x,0,Infinity}]]==0}] {(1/20)*(Pi + Sqrt[2*(-7 + 5*Sqrt[2])]*Pi - Log[2]), True} Module[{a=1,b=2,c=1, s}, {s=FullSimplify[soln[a,b,c]],FullSimplify[s-Integrate[x/(( a+x)*(b+(c+x^2)^2)),{x,0,Infinity}]]==0}] {(1/24)*(Sqrt[-10 + 6*Sqrt[3]]*Pi + 2*Sqrt[2]*ArcTan[Sqrt[2]] - Log[3]), True} Module[{a=1,b=1,c=-1, s}, {s=FullSimplify[ soln[a,b,c]],FullSimplify[s-Integrate[x/((a+ x)*(b+(c+x^2)^2)),{x,0,Infinity}]]==0}] {(1/4)*(Sqrt[2*(-1 + Sqrt[2])]*Pi - Log[2]), True} Bob Hanlon > > From: Daohua Song <ds2081 at columbia.edu> To: mathgroup at smc.vnet.net > Date: 2004/08/14 Sat AM 01:50:24 EDT > To: mathgroup at smc.vnet.net > Subject: [mg50109] [mg50074] Can this integration be done? > > Dear Group, > I am wondering whether the following integration has an analytic > expression. Alough i believe so. > Integrate[x/((a + x)*(b + (c + x^2)^2)),{0,Infinity}]. > When i set a=b=c=1,mathematica give me an answer. > > Any help is appreciated. > sincerely > Daohua > >