Re: Can this integration be done?

• To: mathgroup at smc.vnet.net
• Subject: [mg50109] Re: [mg50074] Can this integration be done?
• From: Bob Hanlon <hanlonr at cox.net>
• Date: Sun, 15 Aug 2004 03:14:43 -0400 (EDT)
• Sender: owner-wri-mathgroup at wolfram.com

```Clear[a,b,c,x, soln];

soln[a_,b_,c_] := Evaluate[Module[{x,int},
int = Integrate[x/((a+x)*(b+(c+x^2)^2)),x];
FullSimplify[Limit[int , x->Infinity]- (int /. x->0)]]];

soln[a,b,c]

(I*Pi*((c*(Sqrt[1/(c + I*Sqrt[b])] -
Sqrt[1/(c - I*Sqrt[b])]) + I*Sqrt[b]*
(Sqrt[1/(c - I*Sqrt[b])] +
Sqrt[1/(c + I*Sqrt[b])]))*a^2 +
(c^2 + b)*(Sqrt[1/(c + I*Sqrt[b])] -
Sqrt[1/(c - I*Sqrt[b])])) +
2*a*(a^2 + c)*ArcCot[c/Sqrt[b]] +
a*Sqrt[b]*(4*Log[a] - Log[c^2 + b]))/
(4*Sqrt[b]*((a^2 + c)^2 + b))

While this will not work for all values of the parameters, it can provide results:

Module[{a=1,b=1,c=1, s},
{s=FullSimplify[soln[a,b,c]],Simplify[s-Integrate[x/((a+x)*(b+(c+x^2)^2)),{\
x,0,Infinity}]]==0}]

{(1/20)*(Pi + Sqrt[2*(-7 + 5*Sqrt[2])]*Pi - Log[2]), True}

Module[{a=1,b=2,c=1, s},
{s=FullSimplify[soln[a,b,c]],FullSimplify[s-Integrate[x/((
a+x)*(b+(c+x^2)^2)),{x,0,Infinity}]]==0}]

{(1/24)*(Sqrt[-10 + 6*Sqrt[3]]*Pi +
2*Sqrt[2]*ArcTan[Sqrt[2]] - Log[3]), True}

Module[{a=1,b=1,c=-1, s},
{s=FullSimplify[
soln[a,b,c]],FullSimplify[s-Integrate[x/((a+
x)*(b+(c+x^2)^2)),{x,0,Infinity}]]==0}]

{(1/4)*(Sqrt[2*(-1 + Sqrt[2])]*Pi - Log[2]), True}

Bob Hanlon

>
> From: Daohua  Song <ds2081 at columbia.edu>
To: mathgroup at smc.vnet.net
> Date: 2004/08/14 Sat AM 01:50:24 EDT
> To: mathgroup at smc.vnet.net
> Subject: [mg50109] [mg50074] Can this integration be done?
>
> Dear Group,
>       I am wondering whether the following integration has an analytic
> expression. Alough i believe so.
>       Integrate[x/((a + x)*(b + (c + x^2)^2)),{0,Infinity}].
>       When i set a=b=c=1,mathematica give me an answer.
>
>       Any help is appreciated.
> sincerely
> Daohua
>
>

```

• Prev by Date: Re: Re: Smalest enclosing circle
• Next by Date: Re: Re: New user: Abs[] problem
• Previous by thread: Re: Can this integration be done?
• Next by thread: Re: Can this integration be done?